Skip to main content

EMG-Based Classification of Forearm Muscles in Prehension Movements: Performance Comparison of Machine Learning Algorithms

  • Conference paper
  • First Online:
Cyber Security and Computer Science (ICONCS 2020)

Abstract

This paper aimed to classify two forearm muscles known as Flexor Carpi Ulnaris (FCU) and Extensor Carpi Radialis Longus (ECRL) using surface Electromyography (sEMG) signal during different hand prehension tasks, such as cylindrical, tip, spherical, palmar, lateral and hook while grasping any object. Thirteen Machine Learning (ML) algorithms were analyzed to compare their performance using a single EMG time domain feature called integrated EMG (IEMG). The tree-based methods have the top performance to classify the forearm muscles than other ML methods among all those 13 ML algorithms. Results showed that 4 out of 5 tree-based classifiers achieved more than 75% accuracies, where the random forest method showed maximum classification accuracy (85.07%). Additionally, these tree-based ML methods computed the variable importance in classification margin. The results showed that the lateral grasping was the most important moving variable for all those algorithms except AdaBoost where tipping was the most significant movement variable for this method. We hope, this ML- and EMG-based classification results presented in the paper may alleviate some of the problems in implementing advanced forearm prosthetics, rehabilitation devices and assistive biomedical robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weeks, K.D., Dines, D.M.: Ulnar collateral ligament: throwing biomechanics. In: Dines, J.S., Altchek, D.W. (eds.) Elbow Ulnar Collateral Ligament Injury: A Guide to Diagnosis and Treatment, pp. 11–16. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7540-9_2

    Chapter  Google Scholar 

  2. Islam, A., Sundaraj, K., Ahmad, B., Ahamed, N.U., Ali, A.: Mechanomyography sensors for muscle assessment: a brief review. J. Phys. Ther. Sci. 24(12), 1359–1365 (2012)

    Article  Google Scholar 

  3. Lipinski, C.L., Donovan, L., McLoughlin, T.J., Armstrong, C.W., Norte, G.E.: Surface electromyography of the forearm musculature during an overhead throwing rehabilitation progression program. Phys. Ther. Sport 33(18), 109–116 (2018)

    Article  Google Scholar 

  4. Aktan, M.E., AkdoÄŸan, E.: Design and control of a diagnosis and treatment aimed robotic platform for wrist and forearm rehabilitation: DIAGNOBOT. Adv. Mech. Eng. 10(1), 1687814017749705 (2018)

    Article  Google Scholar 

  5. Islam, A., Sundaraj, K., Ahmad, R.B., Sundaraj, S., Ahamed, N.U., Ali, M.A.: Analysis of crosstalk in the mechanomyographic signals generated by forearm muscles during different wrist postures. Muscle Nerve 51(6), 899–906 (2015)

    Article  Google Scholar 

  6. Ahamed, N.U., Sundaraj, K., Ahmad, B., Rahman, M., Ali, M.A., Islam, M.A.: Surface electromyographic analysis of the biceps brachii muscle of cricket bowlers during bowling. Aust. Phys. Eng. Sci. Med. 37(1), 83–95 (2014). https://doi.org/10.1007/s13246-014-0245-1

    Article  Google Scholar 

  7. Schoeffl, V., Klee, S., Strecker, W.: Evaluation of physiological standard pressures of the forearm flexor muscles during sport specific ergometry in sport climbers. Br. J. Sports Med. 38(4), 422–425 (2004)

    Article  Google Scholar 

  8. Kapelner, T., Negro, F., Aszmann, O.C., Farina, D.: Decoding motor unit activity from forearm muscles: perspectives for myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 26(1), 244–251 (2018)

    Article  Google Scholar 

  9. Islam, M.A., Sundaraj, K., Ahmad, R.B., Sundaraj, S., Ahamed, N.U., Ali, M.A.: Cross-talk in mechanomyographic signals from the forearm muscles during sub-maximal to maximal isometric grip force. PLoS One 9(5), e96628 (2014)

    Article  Google Scholar 

  10. Ahamed, N.U., Sundaraj, K., Ahmad, R.B., Rahman, M., Islam, A., Ali, A.: Analysis of the effect on electrode placement on an adolescent’s biceps brachii during muscle contractions using a wireless EMG sensor. J. Phys. Ther. Sci. 24(7), 609–611 (2012)

    Article  Google Scholar 

  11. Frigo, C., Ferrarin, M., Frasson, W., Pavan, E., Thorsen, R.: EMG signals detection and processing for online control of functional electrical stimulation. J. Electromyogr. Kinesiol. 10(5), 351–360 (2000)

    Article  Google Scholar 

  12. Ahamed, N.U., Sundaraj, K., Ahmad, R.B., Nadarajah, S., Shi, P.T., Rahman, S.M.: Recent Survey of Automated Rehabilitation Systems Using EMG Biosensors. J. Phys. Ther. Sci. 23(6), 945–948 (2011)

    Article  Google Scholar 

  13. Ahamed, N.U., Sundaraj, K., Alqahtani, M., Altwijri, O., Ali, M., Islam, M.: EMG-force relationship during static contraction: effects on sensor placement locations on biceps brachii muscle. Technol. Health Care 22(4), 505–513 (2014)

    Article  Google Scholar 

  14. Phinyomark, A., Scheme, E.: EMG pattern recognition in the era of big data and deep learning. Big Data Cogn. Comput. 2(3), 21 (2018)

    Article  Google Scholar 

  15. Ahamed, N.U., Benson, L., Clermont, C., Osis, S.T., Ferber, R.: Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions. PLoS One 13(9), e0203839 (2018)

    Article  Google Scholar 

  16. Palaniappan, R., Sundaraj, K., Ahamed, N.U.: Machine learning in lung sound analysis: a systematic review. Biocybern. Biomed. Eng. 33(3), 129–135 (2013)

    Article  Google Scholar 

  17. Ahamed, N.U., Benson, L., Clermont, C., Osis, S.T., Ferber, R.: Fuzzy inference system-based recognition of slow, medium and fast running conditions using a triaxial accelerometer. Proc. Comput. Sci. 114, 401–407 (2017)

    Article  Google Scholar 

  18. Islam, M.A., Sundaraj, K., Ahmad, R.B., Sundaraj, S., Ahamed, N.U., Ali, M.A.: Longitudinal, lateral and transverse axes of forearm muscles influence the crosstalk in the mechanomyographic signals during isometric wrist postures. PLoS One 9(8), e104280 (2014)

    Article  Google Scholar 

  19. Gu, Y., Yang, D., Huang, Q., Yang, W., Liu, H.: Robust EMG pattern recognition in the presence of confounding factors: features, classifiers and adaptive learning. Expert Syst. Appl. 96, 208–217 (2018)

    Article  Google Scholar 

  20. Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R.: Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 515–524. ACM Digital Library, NY, USA (2008)

    Google Scholar 

  21. Khokhar, Z.O., Xiao, Z.G., Menon, C.: Surface EMG pattern recognition for real-time control of a wrist exoskeleton. Biomed. Eng. Online 9(1), 41 (2010)

    Article  Google Scholar 

  22. Arjunan, S.P., Kumar, D.K., Naik, G.R.: A machine learning based method for classification of fractal features of forearm sEMG using twin support vector machines. In: Annual IEEE International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 4821–4824. IEEE, Buenos Aires (2010)

    Google Scholar 

  23. Yoo, H., Park, H., Lee, B.: Optimized method for surface electromyography classification regarding channel reduction in hand prosthesis: a pilot study. Ann. Phys. Rehabil. Med. 61, e468 (2018)

    Article  Google Scholar 

  24. Benalcázar, M.E., Jaramillo, A.G., Zea, A., Páez, A., Andaluz, V.H.: Hand gesture recognition using machine learning and the Myo armband. In: 25th European Signal Processing Conference, pp. 1040–1044. IEEE, Kos (2017)

    Google Scholar 

  25. Uvanesh, K., et al.: Classification of surface electromyogram signals acquired from the forearm of a healthy volunteer. In: Classification and Clustering in Biomedical Signal Processing, pp. 315–333. IGI Global (2016)

    Google Scholar 

  26. Su, R., Chen, X., Cao, S., Zhang, X.: Random forest-based recognition of isolated sign language subwords using data from accelerometers and surface electromyographic sensors. Sensors 16(1), 100 (2016)

    Article  Google Scholar 

  27. Chen, X., Zhang, X., Zhao, Z.-Y., Yang, J.-H., Lantz, V., Wang, K.-Q.: Multiple hand gesture recognition based on surface EMG signal. In: 1st International conference on Bioinformatics and Biomedical Engineering, pp. 506–509. IEEE, Wuhan (2007)

    Google Scholar 

  28. Pancholi, S., Joshi, A.M.: Portable EMG data acquisition module for upper limb prosthesis application. IEEE Sens. J. 18(8), 3436–3443 (2018)

    Article  Google Scholar 

  29. Kim, K.S., Choi, H.H., Moon, C.S., Mun, C.W.: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11(3), 740–745 (2011)

    Article  Google Scholar 

  30. Dua, D., Taniskidou, E.F.: UCI machine learning repository. University of California, School of Information and Computer Science, Irvine, CA. http://archive.ics.uci.edu/ml. Accessed 22 Nov 2019

  31. Sapsanis, C., Georgoulas, G., Tzes, A., Lymberopoulos, D.: Improving EMG based classification of basic hand movements using EMD. In: 35th Annual International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 5754–5757. IEEE, Osaka (2013)

    Google Scholar 

  32. Sapsanis, C., Georgoulas, G., Tzes, A.: EMG based classification of basic hand movements based on time-frequency features. In: 21st Mediterranean Conference Control & Automation (MED), pp. 716–722. IEEE, Chania (2013)

    Google Scholar 

  33. Raschka, S.: Python Machine Learning. Packt Publishing Ltd., Birmingham (2015)

    Google Scholar 

  34. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(11), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation, Encyclopedia of Database Systems (EDBS), pp. 1–7. Arizona State University, Springer, Heidelberg (2016)

    Book  Google Scholar 

  36. Gorunescu, F.: Classification performance evaluation. In: Gorunescu, F. (ed.) Data Mining. Intelligent Systems Reference Library, 12, pp. 319–330. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19721-5_6

    Chapter  MATH  Google Scholar 

  37. Ahamed, N.U., Kobsar, D., Benson, L., Clermon, C.T., Osis, S.T., Ferber, R.: Subject-specific and group-based running pattern classification using a single wearable sensor. J. Biomech. 84, 227–233 (2019)

    Article  Google Scholar 

  38. Auret, L., Aldrich, C.: Empirical comparison of tree ensemble variable importance measures. Chemometr. Intell. Lab. Syst. 105(2), 157–170 (2011)

    Article  Google Scholar 

  39. Gu Z., Zhang K., Zhao W., Luo Y.: Multi-class classification for basic hand movements. https://www.andrew.cmu.edu/user/zijingg/Multi_Class_Classification_for_Basic_Hand_Movements.pdf. Accessed 23 Sept 2019

  40. Isakov, E., Keren, O., Benjuya, N.: Trans-tibial amputee gait: time-distance parameters and EMG activity. Prosthet. Orthot. Int. 24(3), 216–220 (2000)

    Article  Google Scholar 

  41. Sypkes, C.T., Kozlowski, B.J., Grant, J., Bent, L.R., McNeil, C.J., Power, G.A.: The influence of residual force enhancement on spinal and supraspinal excitability. PeerJ 6, e5421 (2018)

    Article  Google Scholar 

  42. Parker, P., Englehart, K., Hudgins, B.: Myoelectric signal processing for control of powered limb prostheses. J. Electromyogr. Kinesiol. 16, 541–548 (2006)

    Article  Google Scholar 

  43. Ahamed, N.U., Sundaraj, K., Ahmad, R.B., Rahman, M., Ali, A.: A framework for the development of measurement and quality assurance in software-based medical rehabilitation systems. Proc. Eng. 41, 53–60 (2012)

    Article  Google Scholar 

  44. Klein, C.S., Li, S., Hu, X., Li, X.: Editorial: electromyography (EMG) techniques for the assessment and rehabilitation of motor impairment following stroke. Front. Neurol. 9, 1122 (2018)

    Article  Google Scholar 

  45. Cao, H., Sun, S., Zhang, K.: Modified EMG-based handgrip force prediction using extreme learning machine. Soft. Comput. 21(2), 491–500 (2015). https://doi.org/10.1007/s00500-015-1800-8

    Article  Google Scholar 

  46. Amsuss, S., Goebel, P.M., Jiang, N., Graimann, P.B., Paredes, L., Farina, D.: Self-correcting pattern recognition system of surface EMG signals for upper limb prosthesis control. IEEE Trans. Biomed. Eng. 61(4), 1167–1176 (2014)

    Article  Google Scholar 

  47. Ahamed, N.U., Sundaraj, K., Poo, T.S.: Design and development of an automated, portable and handheld tablet personal computer-based data acquisition system for monitoring electromyography signals during rehabilitation. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 227(3), 262–274 (2013)

    Article  Google Scholar 

  48. Cipriani, C., Controzzi, M., Carrozza, M.C.: Objectives, criteria and methods for the design of the SmartHand transradial prosthesis. Robotica 28(6), 919–927 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Matiur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahman, S.M., Altwijri, O., Ali, M.A., Alqahtani, M. (2020). EMG-Based Classification of Forearm Muscles in Prehension Movements: Performance Comparison of Machine Learning Algorithms. In: Bhuiyan, T., Rahman, M.M., Ali, M.A. (eds) Cyber Security and Computer Science. ICONCS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-52856-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52856-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52855-3

  • Online ISBN: 978-3-030-52856-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics