Skip to main content

Partial Coverage

  • Chapter
  • First Online:
Optimal Coverage in Wireless Sensor Networks

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 162))

  • 551 Accesses

Abstract

Partial coverage was introduced by Abrams et al., Cheng et al., and Liu and Liang, independently. Actually, they studied different optimization problems about partial coverage. Abrams et al. treated each sensing area as a set of target points and formulate their problem as follows.

I must say that I am rather partial to funny dog videos.

Dominic Holand

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Z. Abrams, A. Goel, S. Plotkin, Set K-cover algorithms for energy efficient monitoring in wireless sensor networks, in Proceedings of the Third International Symposium on Information (2004)

    Google Scholar 

  2. P.K. Agarwal, T. Hagerup, R. Ray, M. Sharir, M. Smid, E. Welzl, Translating a planar object to maximize point containment, in Algorithms – ESA 2002. Lecture Notes in Computer Science, vol. 2461 (Springer, Berlin, 2002)

    Google Scholar 

  3. B. Aronov, S. Har-Peled, On approximating the depth and related problems. SIAM J. Comput. 38, 899–921 (2008)

    MathSciNet  MATH  Google Scholar 

  4. H. Bai, X. Chen, Y.-C. Ho, X. Guan, Percentage coverage configuration in wireless sensor networks, in International Symposium on Parallel and Distributed Processing and Applications (ISPA), vol. 3758 (2005), pp. 780–791

    Google Scholar 

  5. P. Balister, Z. Zheng, S. Kumar, P. Sinha, Trap coverage: allowing coverage holes of bounded diameter in wireless sensor networks, in Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (2009), pp. 136–144

    Google Scholar 

  6. R. Bar-Yehuda, Using homogeneous weights for approximating the partial cover problem. J. Algorithm. 39, 137–144 (2001)

    MathSciNet  MATH  Google Scholar 

  7. N.H. Bshouty, L. Burroughs, Massaging a linear programming solution to give a 2-approximation for a generalization of the vertex cover problem, in Proceedings of the STACS 98, 15th Annual Symposium on Theoretical Aspects of Computer Science, Paris, February 25–27 (1998), pp. 298–308

    Google Scholar 

  8. S. Cabelloab, M. Díaz-Báñezc, C. Searad, A. Sellarèse, J. Urrutiaf, I. Venturag, Covering point sets with two disjoint disks or squares. Comput. Geom. Theory Appl. 40, 195–206 (2008)

    MathSciNet  Google Scholar 

  9. F. Carrabs, R. Cerulli, C. D’Ambrosio, A. Raiconi, A hybrid exact approach for maximizing lifetime in sensor networks with complete and partial coverage constraints. J. Netw. Comput. Appl. 58, 12–22 (2015)

    MATH  Google Scholar 

  10. T.M. Chan, N. Hu, Geometric red-blue set cover for unit squares and related problems. Comput. Geom. 48(5), 380–385 (2015)

    MathSciNet  MATH  Google Scholar 

  11. B. Chazelle, The Discrepancy Method: Randomness and Complexity (Cambridge University Press, New York, 2001)

    MATH  Google Scholar 

  12. B. Chazelle, The discrepancy method in computational geometry, in Handbook of Discrete and Computational Geometry (CRC, Boca Raton, 2004), pp. 983–996

    Google Scholar 

  13. B. Chazelle, D.T. Lee, On a circle placement problem. Computing 36, 1–16 (1986)

    MathSciNet  MATH  Google Scholar 

  14. W. Chen, S. Chen, D. Li, Minimum-delay POIs coverage under obstacle-constraint in emergency management, in WAIM Workshops (2013), pp. 175–186

    Google Scholar 

  15. M.X. Cheng, L. Ruan, W. Wu, Achieving minimum coverage breach under bandwidth constraints in wireless sensor networks, in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies (2005)

    Google Scholar 

  16. M.X. Cheng, L. Ruan, W. Wu, Coverage breach problems in bandwidth-constrained sensor networks. ACM Trans. Sens. Netw. 3(2), 12 (2007)

    Google Scholar 

  17. M. de Berg, S. Cabello, S. Har-Peled, Covering many or few points with unit disks. Theory of Computing Systems 45(3), 446–469 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Z. Drezner, G.O. Wesolowsky, Finding the circle or rectangle containing the minimum weight of points. Location Sci. 2, 83–90 (1994)

    MATH  Google Scholar 

  19. D.-Z. Du, K.-I. Ko, X. Hu, Design and Analysis of Approximation Algorithms (Springer, Berlin, 2011)

    Google Scholar 

  20. L. Fleisher, S. Iwata, A push-relabel framework for submodular function minimization and applications to parametric optimization. Discret. Appl. Math. 131, 311–322 (2003)

    MathSciNet  MATH  Google Scholar 

  21. R. Gandhi, S. Khuller, S. Aravind, Approximation algorithms for partial covering problems. J. Algorithm. 53(1), 55–84 (2004)

    MathSciNet  MATH  Google Scholar 

  22. S. Gao, X. Wang, Y. Li, p-Percent coverage schedule in wireless sensor networks, in Proceedings of 17th International Conference on Computer Communications and Networks (2008), pp. 548–553

    Google Scholar 

  23. N. Garg, J. Köemann, Faster and simpler algorithms for multicommodity flows and other fractional packing problems, in Proceedings of the 39th Annual Symposium on the Foundations of Computer Science (1998), pp. 300–309

    Google Scholar 

  24. C. Glaβer, C. Reitwieβner, H. Schmitz, Multiobjective disk cover admits a PTAS, in Algorithms and Computation, Proceedings 19th International Symposium, ISAAC 2008, Gold Coast, December 15–17 (2008), pp. 40–51

    Google Scholar 

  25. Y. Gu, Y. Ji, J. Li, B. Zhao, An optimal algorithm for solving partial target coverage problem in wireless sensor networks. Wirel. Commun. Mob. Comput. 13(13), 1205–1219 (2013)

    Google Scholar 

  26. J. Hastad, Some optimal inapproximability results, in Proceedings of the 29th ACM Symposium on the Theory of Computing (2002)

    Google Scholar 

  27. K. Jin, J. Li, H. Wang, B. Zhang, N. Zhang, Near-linear time approximation schemes for geometric maximum coverage. Theor. Comput. Sci. 725, 64–78 (2018)

    MathSciNet  MATH  Google Scholar 

  28. M. Kearns, The Computational Complexity of Machine Learning (MIT Press, Cambridge, 1990)

    Google Scholar 

  29. J. Könemann, O. Parekh, D. Segev, A unified approach to approximating partial covering problems. Algorithmica 59(4), 489–509 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Y. Li, C. Ai, Z. Cai, R.A. Beyah, Sensor scheduling for p-percent coverage in wireless sensor networks. Clust. Comput. 14(1), 27–40 (2011)

    Google Scholar 

  31. Y. Li, C.T. Vu, C. Ai, G. Chen, Y. Zhao, Transforming complete coverage algorithms to partial coverage algorithms for wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(4), 695–703 (2011)

    Google Scholar 

  32. M. Li, Y. Ran, Z. Zhang, Approximation algorithms for the minimum power partial cover problem, in Algorithmic Aspects in Information and Management (2019), pp. 179–191

    Google Scholar 

  33. C. Liu, G. Cao, Distributed critical location coverage in wireless sensor networks with lifetime constraint, in IEEE International Conference on Computer Communications (INFOCOM) (2012), pp. 1314–1322

    Google Scholar 

  34. S. Liu, H. Du, Approximation for minimum weight partial coverage in wireless sensor networks to appear in Discrete Mathematics, Algorithms and Applications

    Google Scholar 

  35. Y. Liu, W. Liang, Approximate coverage in wireless sensor networks, in Proceedings of the IEEE International Conference on Local Computer Networks (LCN) (2005), pp. 68–75

    Google Scholar 

  36. B. Liu, D. Towsley, A study of the coverage of large-scale sensor networks, in Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS) (2004), pp. 475–483

    Google Scholar 

  37. M. Liu, J. Cao, Y. Zheng, L. Chen, L. Xie, Analysis for multi-coverage problem in wireless sensor networks. J. Softw. 18(1), 127–136 (2007)

    MATH  Google Scholar 

  38. L. Lovász, On the ratio of optimal integral and fractional covers. Discret. Math. 13(4), 383–390 (1975)

    MathSciNet  MATH  Google Scholar 

  39. P. Manurangsi, Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph, in STOC 2017: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (2017), pp. 19–23

    Google Scholar 

  40. J. Mestre, A primal-dual approximation algorithm for partial vertex cover: making educated guesses. Algorithmica 55(1), 227–239 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Y. Ran, Y. Shi, Z. Zhang, Local ratio method on partial set multi-cover. J. Comb. Optim. 34, 302–313 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Y. Ran, Z. Zhang, H. Du, Y. Zhu, Approximation algorithm for partial positive influence problem in social network. J. Comb. Optim. 33(2), 791–802 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Y. Ran, Y. Shi, Z. Zhang, Primal dual algorithm for partial set multi-cover, in International Conference on Combinatorial Optimization and Applications (2018), pp. 372–385

    Google Scholar 

  44. Y. Ran, Y. Shi, C. Tang, Z. Zhang, A primal-dual algorithm for the minimum partial set multi-cover problem. J. Comb. Optim. 39(3), 725–746 (2020)

    MathSciNet  MATH  Google Scholar 

  45. A. Rossi, A. Singh, M. Sevaux, Column generation algorithm for sensor coverage scheduling under bandwidth constraints. Networks 60(3), 141–154 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Y. Shi, Y. Ran, Z. Zhang, J. Willson, G. Tong, D.-Z. Du, Approximation algorithm for the partial set multi-cover problem. J. Global Optim. 75(4), 1133–1146 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Y. Shi, Y. Ran, Z. Zhang, D.-Z. Du, A bicriteria algorithm for the minimum submodular cost partial set multi-cover problem. Theor. Comput. Sci. 803, 1–9 (2020)

    MathSciNet  MATH  Google Scholar 

  48. P. Slavík, Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)

    MathSciNet  MATH  Google Scholar 

  49. C.T. Vu, G. Chen, Y. Zhao, Y. Li, A universal framework for partial coverage in Wireless Sensor Networks, in 2009 IEEE 28th International Performance Computing and Communications Conference (2009), pp. 1–8

    Google Scholar 

  50. G. Wang, G. Cao, T. Porta, Movement-assisted sensor deployment, in Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (2004), pp. 2469–2479

    Google Scholar 

  51. D. Wang, B. Xie, D.P. Agrawal, Coverage and lifetime optimization of wireless sensor networks with Gaussian distribution. IEEE Trans. Mob. Comput. 7(12), 1444–1458 (2008)

    Google Scholar 

  52. C. Wang, M.T. Thai, Y. Li, F. Wang, W. Wu, Optimization scheme for sensor coverage scheduling with bandwidth constraints. Optim. Lett. 3(1), 63–75 (2009)

    MathSciNet  MATH  Google Scholar 

  53. L. Wang, J.-Y. Yang, Y.-Y. Lin, W.-J. Lin, Keeping desired qos by a partial coverage algorithm for cluster-based wireless sensor networks. J. Netw. 9 (12), 3221–3229 (2014)

    Google Scholar 

  54. Y. Wang, S. Wu, Z. Chen, X. Gao, G. Chen, Coverage problem in wireless sensor networks with uncertain properties: a survey. Comput. Netw. 123, 200–232 (2017)

    Google Scholar 

  55. L. Wolsey, An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    MathSciNet  MATH  Google Scholar 

  56. Y. Wu, C. Ai, S. Gao, Y. Li, p-Percent coverage in wireless sensor networks, in Wireless Algorithms, Systems, and Applications (2008), pp. 200–211

    Google Scholar 

  57. D. Zorbas, D. Glynos, C. Douliger, Connected partial target coverage and network lifetime in wireless sensor networks, in IFIP Conference on Wireless Days (WD) (2009), pp. 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, W., Zhang, Z., Lee, W., Du, DZ. (2020). Partial Coverage. In: Optimal Coverage in Wireless Sensor Networks. Springer Optimization and Its Applications, vol 162. Springer, Cham. https://doi.org/10.1007/978-3-030-52824-9_12

Download citation

Publish with us

Policies and ethics