Advertisement

On New Convolutional Neural Network Based Algorithms for Selective Segmentation of Images

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1248)

Abstract

Selective segmentation is an important aspect of image processing. Being able to reliably segment a particular object in an image has important applications particularly in medical imaging. Robust methods can aid clinicians with diagnosis, surgical planning, etc. Many selective segmentation algorithms use geometric constraints such as information from the edges in order to determine where an object lies. It is still a challenge where there is low contrast present between two objects, and an edge is difficult to detect. Relying on purely edge constraints in this case will fail. We aim to make use of area constraints in addition to edge information in a segmentation model which is robustly capable of segmenting regions in an image even in the presence of low contrast, when given suitable user input. In addition, we implement a deep learning algorithm based on this model, allowing for a supervised, semi-supervised or unsupervised approach, depending on data availability.

Keywords

Image segmentation Variational model Deep learning 

References

  1. 1.
    Badshah, N., Chen, K.: Image selective segmentation under geometrical constraints using an active contour approach. Commun. Comput. Phys. 7(4), 759 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). arXiv preprint arXiv:1901.04056 (2019)
  3. 3.
    Burrows, L., Guo, W., Chen, K., Torella, F.: Edge enhancement for image segmentation using a RKHS method. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 198–207. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-39343-4_17CrossRefGoogle Scholar
  4. 4.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11632–11640 (2019)Google Scholar
  8. 8.
    Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numer. Algorithms 39(1–3), 155–173 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jumaat, A.K., Chen, K.: A reformulated convex and selective variational image segmentation model and its fast multilevel algorithm. Numer. Math. Theory Methods Appl. 12(2), 403–437 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)zbMATHCrossRefGoogle Scholar
  11. 11.
    Lu, T., Neittaanmaki, P., Tai, X.-C.: A parallel splitting-up method for partial differential equations and its applications to Navier-stokes equations. ESAIM Math. Model. Numer. Anal. 26(6), 673–708 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Rada, L., Chen, K.: Improved selective segmentation model using one level-set. J. Algorithms Comput. Technol. 7(4), 509–540 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Roberts, M., Chen, K., Irion, K.L.: A convex geodesic selective model for image segmentation. J. Math. Imaging Vis. 61(4), 482–503 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  17. 17.
    Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Spencer, J., Chen, K.: A convex and selective variational model for image segmentation. Commun. Math. Sci. 13(6), 1453–1472 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Weickert, J., Romeny, B.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)CrossRefGoogle Scholar
  20. 20.
    Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematical Sciences and Centre for Mathematical Imaging TechniquesUniversity of LiverpoolLiverpoolUK
  2. 2.Liverpool Vascular and Endovascular ServiceLiverpool University HospitalsLiverpoolUK

Personalised recommendations