Skip to main content

On New Convolutional Neural Network Based Algorithms for Selective Segmentation of Images

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2020)

Abstract

Selective segmentation is an important aspect of image processing. Being able to reliably segment a particular object in an image has important applications particularly in medical imaging. Robust methods can aid clinicians with diagnosis, surgical planning, etc. Many selective segmentation algorithms use geometric constraints such as information from the edges in order to determine where an object lies. It is still a challenge where there is low contrast present between two objects, and an edge is difficult to detect. Relying on purely edge constraints in this case will fail. We aim to make use of area constraints in addition to edge information in a segmentation model which is robustly capable of segmenting regions in an image even in the presence of low contrast, when given suitable user input. In addition, we implement a deep learning algorithm based on this model, allowing for a supervised, semi-supervised or unsupervised approach, depending on data availability.

Work supported by UK EPSRC grant EP/N014499/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badshah, N., Chen, K.: Image selective segmentation under geometrical constraints using an active contour approach. Commun. Comput. Phys. 7(4), 759 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). arXiv preprint arXiv:1901.04056 (2019)

  3. Burrows, L., Guo, W., Chen, K., Torella, F.: Edge enhancement for image segmentation using a RKHS method. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 198–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_17

    Chapter  Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  5. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11632–11640 (2019)

    Google Scholar 

  8. Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numer. Algorithms 39(1–3), 155–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jumaat, A.K., Chen, K.: A reformulated convex and selective variational image segmentation model and its fast multilevel algorithm. Numer. Math. Theory Methods Appl. 12(2), 403–437 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  11. Lu, T., Neittaanmaki, P., Tai, X.-C.: A parallel splitting-up method for partial differential equations and its applications to Navier-stokes equations. ESAIM Math. Model. Numer. Anal. 26(6), 673–708 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rada, L., Chen, K.: Improved selective segmentation model using one level-set. J. Algorithms Comput. Technol. 7(4), 509–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Roberts, M., Chen, K., Irion, K.L.: A convex geodesic selective model for image segmentation. J. Math. Imaging Vis. 61(4), 482–503 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spencer, J., Chen, K.: A convex and selective variational model for image segmentation. Commun. Math. Sci. 13(6), 1453–1472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weickert, J., Romeny, B.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)

    Article  Google Scholar 

  20. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burrows, L., Chen, K., Torella, F. (2020). On New Convolutional Neural Network Based Algorithms for Selective Segmentation of Images. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics