Skip to main content

Cortical Plate Segmentation Using CNNs in 3D Fetal Ultrasound

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2020)

Abstract

As the fetal brain develops, its surface undergoes rapid changes in shape and morphology. Variations in the emergence of the sulci on the brain surface have commonly been associated with diseased or at-risk pregnancies. Therefore, the process of surface folding is an important biomarker to characterise. Previous work has studied such changes by automatically delineating the cortical plate from MRI images. However, this has not been demonstrated from ultrasound, which is more commonly used for antenatal care. In this work we propose a novel method for segmenting the cortical plate from 3D ultrasound images using three varieties of convolutional neural networks (CNNs). Recent work has found improvements in medical image segmentations using multi-task learning with a distance transform regularizer. Here we implemented a similar method but found it was outperformed by the U-Net, which was able to segment the cortical plate with a Dice score of \(0.81\,\pm \,0.06\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., et al.: Ultrasonographic characteristics of cortical sulcus development in the human fetus between 18 and 41 weeks of gestation. Chin. Med. J. 130(8), 920 (2017)

    Article  Google Scholar 

  2. Chi, J.G., Dooling, E.C., Gilles, F.H.: Gyral development of the human brain. Ann. Neurol. 1(1), 86–93 (1977). https://doi.org/10.1002/ana.410010109

    Article  Google Scholar 

  3. Chung, Y.S., Hyatt, C.J., Stevens, M.C.: Adolescent maturation of the relationship between cortical gyrification and cognitive ability. NeuroImage 158, 319–331 (2017)

    Article  Google Scholar 

  4. Clouchoux, C., Guizard, N., Evans, A.C., Du Plessis, A.J., Limperopoulos, C.: Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am. J. Obstet. Gynecol. (2012). https://doi.org/10.1016/j.ajog.2011.10.002

    Article  Google Scholar 

  5. Clouchoux, C., et al.: Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct. Funct. 217(1), 127–139 (2012)

    Article  Google Scholar 

  6. Corbett-Detig, J., et al.: 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct. Funct. 215(3–4), 255–263 (2011)

    Article  Google Scholar 

  7. Dangi, S., Linte, C.A., Yaniv, Z.: A distance map regularized cnn for cardiac cine mr image segmentation. Med. Phys. 46(12), 5637–5651 (2019)

    Article  Google Scholar 

  8. Dubois, J., et al.: Mapping the early cortical folding process in the preterm newborn brain. Cerebral Cortex 18(6), 1444–1454 (2008). https://doi.org/10.1093/cercor/bhm180

  9. Fernández, V., Llinares-Benadero, C., Borrell, V.: Cerebral cortex expansion and folding: what have we learned? The EMBO J. 35(10), 1021–1044 (2016). https://doi.org/10.15252/embj.201593701

  10. Garel, C., et al.: Fetal cerebral cortex: normal gestational landmarks identified using prenatal mr imaging. Am. J. Neuroradiol. 22(1), 184–189 (2001)

    Google Scholar 

  11. Guizard, N., Lepage, C., Fonov, V., Hakyemez, H., Evans, A., Limperopoulos, C.: Development of fetus brain atlas from multi-axial MR acquisitions. In: Proceedings of the Sixteenth Annual Meeting of the International Society for Magnetic Resonance in Medicine, vol. 672, p. 132 (2008)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Lefèvre, J., et al.: Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns? Cereb. Cortex 26(7), 3023–3035 (2016). https://doi.org/10.1093/cercor/bhv123. https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhv123

  14. Mangin, J.F., Lopez-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Technical report (1995)

    Google Scholar 

  15. Namburete, A.I.L., van Kampen, R., Papageorghiou, A.T., Papież, B.W.: Multi-channel groupwise registration to construct an ultrasound-specific fetal brain atlas. In: Melbourne, A., et al. (eds.) PIPPI/DATRA-2018. LNCS, vol. 11076, pp. 76–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00807-9_8

    Chapter  Google Scholar 

  16. Namburete, A.I., Xie, W., Yaqub, M., Zisserman, A., Noble, J.A.: Fully-automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning. Med. Image Anal. 46, 1–14 (2018)

    Article  Google Scholar 

  17. Paladini, D., Malinger, G., Monteagudo, A., Pilu, G., Timor-Tritsch, I., Toi, A.: Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’. Ultrasound Obstet. Gynecol. 29(1), 109–116 (2007)

    Article  Google Scholar 

  18. Papageorghiou, A.T., et al.: International standards for fetal growth based on serial ultrasound measurements: the fetal growth longitudinal study of the intergrowth-21st project. Lancet 384(9946), 869–879 (2014)

    Article  Google Scholar 

  19. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  20. Poon, L.C., et al.: Transvaginal three-dimensional ultrasound assessment of sylvian fissures at 18–30 weeks’ gestation. Ultrasound Obstet. Gynecol. 54(2), 190–198 (2019)

    Article  Google Scholar 

  21. Rajagopalan, V., et al.: Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J. Neurosci. 31(8), 2878–2887 (2011)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation, May 2015. http://arxiv.org/abs/1505.04597

  23. Striedter, G.F., Srinivasan, S., Monuki, E.S.: Cortical folding: when, where, how, and why? Annu. Rev. Neurosci. 38(1), 291–307 (2015)

    Article  Google Scholar 

  24. Sun, T., Hevner, R.F.: Growth and folding of the mammalian cerebral cortex: from molecules to malformations, April 2014. https://doi.org/10.1038/nrn3707

  25. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  26. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  27. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS-2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgements

MW is supported by the Engineering and Physical Sciences Research Council (EPSRC) and Medical Research Council (MRC) [grant number EP/L016052/1]. MJ is supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), and this research was funded by the Well- come Trust [215573/Z/19/Z]. The Wellcome Centre for Integrative Neuroimaging is supported by core funding from the Wellcome Trust [203139/Z/16/Z]. AN is grateful for support from the UK Royal Academy of Engineering under the Engineering for Development Research Fellowships scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine K. Wyburd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wyburd, M.K., Jenkinson, M., Namburete, A.I.L. (2020). Cortical Plate Segmentation Using CNNs in 3D Fetal Ultrasound. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics