Advertisement

Retinal Biomarkers Discovery for Cerebral Small Vessel Disease in an Older Population

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1248)

Abstract

The retinal and cerebral microvasculatures share many morphological and physiological properties. In this pilot we study the strength of the associations between morphological measurements of the retinal vasculature, obtained from fundus camera images, and of features of Small Vessel Disease (SVD), as white matter hyperintensities (WMH) and perivascular spaces (PVS), obtained from MRI brain scans. We performed a 500-trial bootstrap analysis with Regularized Gaussian linear regression on a cohort of older community-dwelling subjects (Lothian Birth Cohort 1936, N = 866) in their eighth decade. Arteriolar bifurcation coefficients, vessel tortuosity and fractal dimension predicted WMH volume in 23% of the trials. Arteriolar widths, venular bifurcation coefficients, and venular tortuosity predicted PVS in up to 99.6% of the trials.

Keywords

Small vessel disease Retina Biomarkers 

Notes

Acknowledgements

The LBC1936 Study (http://www.disconnectedmind.ed.ac.uk/) was funded by Age UK and the UK Medical Research Council (MR/R02462/1, MR/013111/1, G1001245, Ref. 82800) (including the Sidney De Haan Award for Vascular Dementia). Funds were also received from The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1), and the Biotechnology and Biological Sciences Research Council (BBSRC). The work was also funded by the EPSRC grant [LB EP/M005976/1], the Fondation Leducq Network for the Study of Perivascular Spaces in Small Vessel Disease [LB 16 CVD 05], the Row Fogo Charitable Trust [MVH Grant No. BROD.FID3668413], the European Union Horizon 2020 [PHC-03-15, project No 666881, “SVDs@Target”], the UK Dementia Research Institute at the University of Edinburgh and the British Heart Foundation Centre for Research Excellence, Edinburgh.

References

  1. 1.
    Arboix, A.: Retinal microvasculature in acute lacunar stroke. Lancet Neurol. 8(7), 596–598 (2009).  https://doi.org/10.1016/S1474-4422(09)70137-1CrossRefGoogle Scholar
  2. 2.
    Ballerini, L., et al.: Perivascular spaces segmentation in brain MRI using optimal 3D filtering. Sci. Rep. 8 (2018).  https://doi.org/10.1038/s41598-018-19781-5
  3. 3.
    Ballerini, L., et al.: Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. a study in the lothian birth cohort 1936. NeuroImage: Clinical 25, 102120 (2020).  https://doi.org/10.1016/j.nicl.2019.102120
  4. 4.
    Bernal, J., et al.: Retrospective imaging artefact reduction improves perivascular spaces segmentation and quantification in brain magnetic resonance imaging. In: Medical Image Understanding and Analysis. Springer International Publishing (2020)Google Scholar
  5. 5.
    Brown, R., et al.: Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovascular Research, p. cvy113 (2018).  https://doi.org/10.1093/cvr/cvy113
  6. 6.
    Deary, I.J., et al.: The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatr. 7, 28–28 (2007).  https://doi.org/10.1186/1471-2318-7-28CrossRefGoogle Scholar
  7. 7.
    Doubal, F.N., et al.: Retinal arteriolar geometry is associated with cerebral white matter hyperintensities on magnetic resonance imaging. Int J. Stroke 5(6), 434–439 (2010).  https://doi.org/10.1111/j.1747-4949.2010.00483.xCrossRefGoogle Scholar
  8. 8.
    Doubal, F.N., Hokke, P.F., Wardlaw, J.M.: Retinal microvascular abnormalities and stroke: a systematic review. J. Neurol. Neurosurg. Psychiatry 80(2), 158–165 (2009).  https://doi.org/10.1136/jnnp.2008.153460CrossRefGoogle Scholar
  9. 9.
    Dumitrascu, O.M., et al.: Retinal microvascular abnormalities as surrogate markers of cerebrovascular ischemic disease: a meta-analysis. J. Stroke Cerebrovasc. Dis. off. J. Natl. Stroke Assoc. 27(7), 1960–1968 (2018).  https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.041CrossRefGoogle Scholar
  10. 10.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. No. 57 in Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton (1993)Google Scholar
  11. 11.
    Fetit, A.E., et al.: A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features. Sci. Rep. 9(1), 3591 (2019).  https://doi.org/10.1038/s41598-019-40403-1CrossRefGoogle Scholar
  12. 12.
    Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI98), pp. 130–137 (1998).  https://doi.org/10.1007/BFb0056195
  13. 13.
    Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010).  https://doi.org/10.18637/jss.v033.i01CrossRefGoogle Scholar
  14. 14.
    Hilal, S., et al.: Microvascular network alterations in retina of subjects with cerebral small vessel disease. Neurosci. Lett. 577, 95–100 (2014).  https://doi.org/10.1016/j.neulet.2014.06.024CrossRefGoogle Scholar
  15. 15.
    Lindley, R.I.: Retinal microvascular signs: a key to understanding the underlying pathophysiology of different stroke subtypes? Int. J. Stroke 3(4), 297–305 (2008).  https://doi.org/10.1111/j.1747-4949.2008.00215.x
  16. 16.
    McGrory, S., et al.: Retinal microvasculature and cerebral small vessel disease in the Lothian Birth Cohort 1936 and Mild Stroke Study. Sci. Rep. 9(1), 6320–6320 (2019).  https://doi.org/10.1038/s41598-019-42534-xCrossRefGoogle Scholar
  17. 17.
    McGrory, S., et al.: Towards standardization of quantitative retinal vascular parameters: comparison of SIVA and VAMPIRE measurements in the Lothian Birth Cohort 1936. Transl. Vis. Sci. Technol. 7(2), 12 (2018).  https://doi.org/10.1167/tvst.7.2.12
  18. 18.
    Mookiah, M.R.K., et al.: Towards standardization of retinal vascular measurements: on the effect of image centering. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 294–302. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00949-6_35CrossRefGoogle Scholar
  19. 19.
    Mutlu, U., et al.: Retinal microvascular calibers are associated with enlarged perivascular spaces in the brain. Stroke 47(5), 1374–1376 (2016).  https://doi.org/10.1161/strokeaha.115.012438CrossRefGoogle Scholar
  20. 20.
    Patton, N., Aslam, T., Macgillivray, T., Pattie, A., Deary, I., Dhillon, B.: Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 206(4), 319–348 (2005).  https://doi.org/10.1111/j.1469-7580.2005.00395.xCrossRefGoogle Scholar
  21. 21.
    Taylor, A.M., Pattie, A., Deary, I.J.: Cohort profile update: The Lothian Birth Cohorts of 1921 and 1936. Int. J. Epidemiol. 47(4), 1042–1042r (2018).  https://doi.org/10.1093/ije/dyy022CrossRefGoogle Scholar
  22. 22.
    Trucco, E., et al.: Novel VAMPIRE algorithms for quantitative analysis of the retinal vasculature. In: 2013 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), pp. 1–4 (2013).  https://doi.org/10.1109/BRC.2013.6487552
  23. 23.
    Trucco, E., et al.: Morphometric measurements of the retinal vasculature in fundus images with VAMPIRE. Biomedical Image Understanding, pp. 91–111 (2015)Google Scholar
  24. 24.
    Valdés-Hernández, M.d.C., Ferguson, K.J., Chappell, F.M., Wardlaw, J.M.: New multispectral MRI data fusion technique for white matter lesion segmentation: method and comparison with thresholding in FLAIR images. Eur. Radiol. 20(7), 1684–1691 (2010).  https://doi.org/10.1007/s00330-010-1718-6
  25. 25.
    Wardlaw, J.M., et al.: Brain aging, cognition in youth and old age and vascular disease in the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging protocol. Int J. Stroke 6(6), 547–559 (2011).  https://doi.org/10.1111/j.1747-4949.2011.00683.xCrossRefGoogle Scholar
  26. 26.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Statistical Methodology) 67(2), 301–320 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, and VAMPIRE ProjectUniversity of EdinburghEdinburghUK
  2. 2.VAMPIRE Project, CVIP, Computing (SSE)University of DundeeDundeeUK
  3. 3.School of Built EnvironmentMassey UniversityAucklandNew Zealand
  4. 4.Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK

Personalised recommendations