Radiomics: A New Biomedical Workflow to Create a Predictive Model

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1248)


‘Radiomics’ is utilized to improve the prediction of patient overall survival and/or outcome. Target segmentation, feature extraction, feature selection, and classification model are the fundamental blocks of a radiomics workflow. Nevertheless, these blocks can be affected by several issues, i.e. high inter- and intra-observer variability. To overcome these issues obtaining reproducible results, we propose a novel radiomics workflow to identify a relevant prognostic model concerning a real clinical problem. In the specific, we propose an operator-independent segmentation system with the consequent automatic extraction of radiomics features, and a novel feature selection approach to create a relevant predictive model in 46 patients with prostate lesion underwent magnetic resonance imaging.

In the specific, using an operator-independent method of target segmentation based on an active contour, ad-hoc automated high-throughput analysis tool capable of calculating a total of 290 radiomics features for each imaging sequence, a novel statistical system for feature reduction and selection, and the discriminant analysis as a method for feature classification, we propose a performant and replicable radiomics workflow for the diagnosis of prostate cancer.

The proposed workflow revealed three and five relevant features on T2-weighted and apparent diffusion coefficient (ADC) maps images, respectively, that were significantly correlated with the histopathological results. In the specific, good performance in lesion discrimination was obtained using the combination of the selected features (accuracy 76.76% and 75.20%, for T2-weighted and ADC maps images, respectively) in an operator-independent and automatic way.


Radiomics Segmentation Feature selection Prostate Magnetic Resonance (MR) 


  1. 1.
    Zhang, Z., Sejdić, E.: Radiological images and machine learning: trends, perspectives, and prospects. Comput. Biol. Med. 108, 354–370 (2019)CrossRefGoogle Scholar
  2. 2.
    Hatt, M., Tixier, F., Visvikis, D., Cheze Le Rest, C.: Radiomics in PET/CT: more than meets the eye? J. Nucl. Med. 58, 365–366 (2017)Google Scholar
  3. 3.
    Sala, E., Mema, E., Himoto, Y., Veeraraghavan, H., Brenton, J.D., Snyder, A., et al.: Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin. Radiol. 72, 3–10 (2017)CrossRefGoogle Scholar
  4. 4.
    Negrini, S., Gorgoulis, V.G., Halazonetis, T.D.: Genomic instability–an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010)CrossRefGoogle Scholar
  5. 5.
    Gerlinger, M., Swanton, C.: How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br. J. Cancer 103, 1139–1143 (2010)CrossRefGoogle Scholar
  6. 6.
    Thawani, R., McLane, M., Beig, N., Ghose, S., Prasanna, P., Velcheti, V., et al.: Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 2018(115), 134–141 (2017). Scholar
  7. 7.
    Giambelluca, D., et al.: PI-RADS 3 lesions: role of prostate MRI texture analysis in the identification of prostate cancer. Curr. Probl. Diagn Radiol. (2019, in press).
  8. 8.
    Ugga, L., et al.: Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61(12), 1365–1373 (2019)Google Scholar
  9. 9.
    Stefano, A., et al.: A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method. BMC Bioinform. (2020, in press)Google Scholar
  10. 10.
    Cuocolo, R., et al.: Prostate MRI technical parameters standardization: a systematic review on adherence to PI-RADSv2 acquisition protocol. Eur. J. Radiol. (2019)Google Scholar
  11. 11.
    Nioche, C., et al.: Lifex: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 78, 4786–4789 (2018)CrossRefGoogle Scholar
  12. 12.
    Szczypiński, P.M., Strzelecki, M., Materka, A., Klepaczko, A.: MaZda-A software package for image texture analysis. Comput. Methods Programs Biomed. 94, 66–76 (2009)CrossRefGoogle Scholar
  13. 13.
    Fang, Y.H.D., et al.: Development and evaluation of an open-source software package “cGITA” for quantifying tumor heterogeneity with molecular images. Biomed. Res. Int. (2014)Google Scholar
  14. 14.
    Comelli, A., Agnello, L., Vitabile, S.: An ontology-based retrieval system for mammographic reports. In: Proceedings - IEEE Symposium on Computers and Communications (2016)Google Scholar
  15. 15.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. (2011)Google Scholar
  16. 16.
    Cuocolo, R., et al.: Machine learning applications in prostate cancer magnetic resonance imaging. Eur. Radiol. Exp. 3, 35 (2019)CrossRefGoogle Scholar
  17. 17.
    Rizzo, S., et al.: Radiomics: the facts and the challenges of image analysis. Eur. Radiol. Exp. (2018)Google Scholar
  18. 18.
    Comelli, A., et al.: A kernel support vector machine based technique for Crohn’s disease classification in human patients. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 262–273. Springer, Cham (2018). Scholar
  19. 19.
    Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. (2014)Google Scholar
  20. 20.
    Chandra, S.S., et al.: Patient specific prostate segmentation in 3-D magnetic resonance images. IEEE Trans. Med. Imaging (2012)Google Scholar
  21. 21.
    Tsai, A., et al.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging (2003)Google Scholar
  22. 22.
    Wang, B., et al.: Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Med. Phys. (2019)Google Scholar
  23. 23.
    Korsager, A.S., et al.: The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images. Med. Phys. (2015)Google Scholar
  24. 24.
    Tian, Z., Liu, L., Fei, B.: A fully automatic multi-atlas based segmentation method for prostate MR images. In: Medical Imaging 2015: Image Processing (2015)Google Scholar
  25. 25.
    Guo, Y., Gao, Y., Shao, Y., Price, T., Oto, A., Shen, D.: Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning. Med. Phys. (2014)Google Scholar
  26. 26.
    Toth, R., Madabhushi, A.: Multifeature landmark-free active appearance models: application to prostate MRI segmentation. IEEE Trans. Med. Imaging (2012)Google Scholar
  27. 27.
    Yang, X., et al.: 3D prostate segmentation in MR image using 3D deeply supervised convolutional neural networks. Med. Phys. (2018)Google Scholar
  28. 28.
    Jia, H., Xia, Y., Song, Y., Cai, W., Fulham, M., Feng, D.D.: Atlas registration and ensemble deep convolutional neural network-based prostate segmentation using magnetic resonance imaging. Neurocomputing (2018)Google Scholar
  29. 29.
    Comelli, A., et al.: A smart and operator independent system to delineate tumours in positron emission tomography scans. Comput. Biol. Med. 102, 1–15 (2018). Scholar
  30. 30.
    Comelli, A., Stefano, A.: A fully automated segmentation system of positron emission tomography studies. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 353–363. Springer, Cham (2020). Scholar
  31. 31.
    Lankton, S., Nain, D., Yezzi, A., Tannenbaum, A.: Hybrid geodesic region-based curve evolutions for image segmentation. In: Hsieh, J., Flynn, M.J. (eds.) Medical Imaging 2007: Physics of Medical Imaging. International Society for Optics and Photonics, p. 65104U (2007).
  32. 32.
    Cohen, J., Cohen, P., West, S., Aiken, L.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale (1983)Google Scholar
  33. 33.
    Comelli, A., et al.: Active contour algorithm with discriminant analysis for delineating tumors in positron emission tomography. Artif. Intell. Med. 94, 67–78 (2019). Scholar
  34. 34.
    Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification in positron emission tomography oncological studies. Pattern Recogn. Image Anal. 28, 106–113 (2018). Scholar
  35. 35.
    Armand, S., Watelain, E., Roux, E., Mercier, M., Lepoutre, F.X.: Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees. Gait Posture. 25, 475–484 (2007)CrossRefGoogle Scholar
  36. 36.
    Comelli, A., et al.: Development of a new fully three-dimensional methodology for tumours delineation in functional images. Comput. Biol. Med. 120, 103701 (2020). Scholar
  37. 37.
    Comelli, A., et al.: K-nearest neighbor driving active contours to delineate biological tumor volumes. Eng. Appl. Artif. Intell. 81, 133–144 (2019). Scholar
  38. 38.
    Comelli, A., et al.: Tissue Classification to Support Local Active Delineation of Brain Tumors. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 3–14. Springer, Cham (2020). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ri.MED FoundationPalermoItaly
  2. 2.Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR)CefalùItaly
  3. 3.Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND)University of PalermoPalermoItaly
  4. 4.Dipartimento di Scienze Agronomiche, Alimentari e Forestali (SAAF)University of PalermoPalermoItaly

Personalised recommendations