Advertisement

Asymmetric Point Spread Function Estimation and Deconvolution for Serial-Sectioning Block-Face Imaging

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1248)

Abstract

Serial-sectioning block-facing (SSBF) imaging is an attractive method to overcome the depth limitations of optical imaging and slice alignment challenges of traditional serial sectioning histology. Despite these advantages, SSBF modalities suffer from reduced axial resolution caused by out of focus sub-surface signals at the block face. In order to restore axial resolution, the sub-surface signal must be removed. In this work, we describe a methodology for restoring the axial resolution through a combination of sample preparation and deconvolution in post-processing. An opacifying agent used during sample preparation, decreases the subsurface signal by absorbing excitation light. From these image stacks we estimate parameters to generate a highly asymmetric point-spread function (PSF), which is then used in a Richardson-Lucy deconvolution algorithm. Whilst our methodology can be widely applied to any SSBF technique, we show its application in multi-fluorescent high resolution episcopic microscopy (MF-HREM), which is a simple and cost-effective alternative to optical sectioning techniques such as two-photon microscopy.

Keywords

Deconvolution Serial-sectioning Point-spread-function 

Notes

Acknowledgements

We would like to thank Sean Ryan for spectroscopy.

References

  1. 1.
    Hildebrand, D.G.C., Cicconet, M., Torres, R.M., et al.: Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545, 345 (2017)CrossRefGoogle Scholar
  2. 2.
    Marion, J., Le Bars, R., Satiat-Jeunemaitre, B., Boulogne, C.: Optimizing CLEM protocols for plants cells: GMA embedding and cryosections as alternatives for preservation of GFP fluorescence in Arabidopsis roots. J. Struct. Biol. 198, 196–202 (2017).  https://doi.org/10.1016/j.jsb.2017.03.008CrossRefGoogle Scholar
  3. 3.
    Steyer, G.J., Roy, D., Salvado, O., Stone, M.E., Wilson, D.L.: Removal of out-of-plane fluorescence for single cell visualization and quantification in cryo-imaging. Ann. Biomed. Eng. 37, 1613–1628 (2009).  https://doi.org/10.1007/s10439-009-9726-xCrossRefGoogle Scholar
  4. 4.
    Amato, S.P., Pan, F., Schwartz, J., Ragan, T.M.: Whole brain imaging with serial two-photon tomography. Front. Neuroanat. 10, 1–11 (2016).  https://doi.org/10.3389/fnana.2016.00031CrossRefGoogle Scholar
  5. 5.
    Zheng, T., Feng, Z., Wang, X., et al.: Review of micro-optical sectioning tomography (MOST): technology and applications for whole-brain optical imaging. Biomed. Opt. Express 10, 4075–4096 (2019)CrossRefGoogle Scholar
  6. 6.
    Walsh, C., Holroyd, N., Finnerty, E., et al.: Multi-fluorescence high-resolution episcopic microscopy (MF-HREM) for three dimensional imaging of adult murine organs. bioRxiv (2020)Google Scholar
  7. 7.
    Ewald, A.J., Mcbride, H., Reddington, M., et al.: Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev. Dyn. 225, 369–375 (2002).  https://doi.org/10.1002/dvdy.10169CrossRefGoogle Scholar
  8. 8.
    Yeung, E.C.T., et al.: Plant Microtechniques and Protocols. Springer International Publishing, Switzerland (2015)Google Scholar
  9. 9.
    Wallace, W., Schaefer, L.H., Swedlow, J.R.: A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31, 1076–1097 (2001)CrossRefGoogle Scholar
  10. 10.
    de Monvel, J.B., Scarfone, E., Le Calvez, S., Ulfendahl, M.: Image-adaptive deconvolution for three-dimensional deep biological imaging. Biophys. J. 85, 3991–4001 (2003).  https://doi.org/10.1016/S0006-3495(03)74813-9CrossRefGoogle Scholar
  11. 11.
    Cole, R.W., Jinadasa, T., Brown, C.M.: Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control. Nat. Protoc. 6, 1929–1941 (2011).  https://doi.org/10.1038/nprot.2011.407CrossRefGoogle Scholar
  12. 12.
    Fish, D.A., Brinicombe, A.M., Pike, E.R., Walker, J.G.: Blind deconvolution by means of the Richardson-Lucy algorithm. JOSA A 12, 58–65 (1995)CrossRefGoogle Scholar
  13. 13.
    Soulez, F., Denis, L., Tourneur, Y., Thiébaut, É.: Blind deconvolution of 3D data in wide field fluorescence microscopy. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1735–1738 (2012)Google Scholar
  14. 14.
    Krishnamurthi, G., Wang, C.Y., Steyer, G., Wilson, D.L.: Removal of subsurface fluorescence in cryo-imaging using deconvolution. Opt. Express 18, 22324–22338 (2010).  https://doi.org/10.1364/OE.18.022324CrossRefGoogle Scholar
  15. 15.
    Samuylov, D.K., Purwar, P., Szekely, G., Paul, G.: Modeling point spread function in fluorescence microscopy with a sparse Gaussian mixture: tradeoff between accuracy and efficiency. IEEE Trans. Image Process. 28, 3688–3702 (2019).  https://doi.org/10.1109/TIP.2019.2898843MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schindelin, J., Arganda-Carreras, I., Frise, E., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).  https://doi.org/10.1038/nmeth.2019CrossRefGoogle Scholar
  17. 17.
    Sage, D., Donati, L., Soulez, F., et al.: DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods 115, 28–41 (2017).  https://doi.org/10.1016/j.ymeth.2016.12.015CrossRefGoogle Scholar
  18. 18.
    Rueden, C., et al.: ImageJ Ops [Software] (2016). https://imagej.net/Ops
  19. 19.
    Zamboni, J.E.D., Casco, V.H.: Estimation methods of the point spread function axial position: a comparative computational study. J. Imaging 3 (2017).  https://doi.org/10.3390/jimaging3010007
  20. 20.
    Peng, H., Bria, A., Zhou, Z., et al.: Extensible visualization and analysis for multidimensional images using Vaa3D. Nat. Protoc. 9, 193–208 (2014).  https://doi.org/10.1038/nprot.2014.011CrossRefGoogle Scholar
  21. 21.
    Peng, H., Ruan, Z., Long, F., et al.: V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348 (2010)CrossRefGoogle Scholar
  22. 22.
    Ming, X., Li, A., Wu, J., et al.: Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PLoS ONE 8, e84557–e84557 (2013).  https://doi.org/10.1371/journal.pone.0084557CrossRefGoogle Scholar
  23. 23.
    Peng, H., Tang, J., Xiao, H., et al.: Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nat. Commun. 5, 4342 (2014).  https://doi.org/10.1038/ncomms5342CrossRefGoogle Scholar
  24. 24.
    Xiao, H., Peng, H.: APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics 29, 1448–1454 (2013).  https://doi.org/10.1093/bioinformatics/btt170CrossRefGoogle Scholar
  25. 25.
    Nicolas, D.E.Y., Laure, B.-F., Christophe, Z., et al.: 3D microscopy deconvolution using Richardson-Lucy algorithm with total variation regularization. STITUT Natl. Rech. en Inform. en Autom. 7, 3–43 (2004)Google Scholar
  26. 26.
    d’Esposito, A., Sweeney, P.W., Ali, M., et al.: Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours. Nat. Biomed. Eng. 2, 773–787 (2018).  https://doi.org/10.1038/s41551-018-0306-yCrossRefGoogle Scholar
  27. 27.
    Zhang, X., Yin, X., Zhang, J., et al.: High-resolution mapping of brain vasculature and its impairment in the hippocampus of Alzheimer’s disease mice. Natl. Sci. Rev. 6, 1223–1238 (2019).  https://doi.org/10.1093/nsr/nwz124CrossRefGoogle Scholar
  28. 28.
    Kirshner, H., Aguet, F., Sage, D., Unser, M.: 3-D PSF fitting for fluorescence microscopy: implementation and localization application. J. Microsc. 249, 13–25 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University College LondonLondonUK

Personalised recommendations