Skip to main content

Unsupervised Deep Learning for Stain Separation and Artifact Detection in Histopathology Images

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1248))

Included in the following conference series:

Abstract

Stain separation is an important pre-processing technique used to aid automated analysis of histopathology images. In this paper, we propose a novel, unsupervised deep learning method for stain separation (Hematoxylin and Eosin). This approach is inspired by Non-Negative Matrix Factorisation (NMF) and decomposes an input image into a stain colour matrix and a stain concentration matrix. In contrast to existing approaches, our method predicts stain colour matrices at the pixel level rather than the image level, thus enabling implicit modelling of tissue-dependant interactions between stains. We demonstrate an 8.81% reduction in mean-squared error on a stain separation task measuring the similarity between predicted and actual hematoxylin images from a publicly available dataset of digitised tissue images. We also present a novel approach to artifact detection in histological images based on a constrained generative adversarial network which we demonstrate is able to detect a variety of artifact types without the use of labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sethi, A., et al.: Empirical comparison of color normalization methods for epithelial-stromal classification in H and E images. J. Pathol. Inform. 7(1), 17 (2016). https://doi.org/10.4103/2153-3539.179984. ISSN 2153-3539. http://www.jpathinformatics.org/text.asp?2016/7/1/17/179984. Accessed 07 Mar 2019

    Article  Google Scholar 

  2. Haub, P., Meckel, T.: A model based survey of colour deconvolution in diagnostic brightfield microscopy: error estimation and spectral consideration. Sci. Rep. 5(1), 12096 (2015). https://doi.org/10.1038/srep12096. ISSN 2045-2322. http://www.nature.com/articles/srep12096. Accessed 07 Mar 2019

    Article  Google Scholar 

  3. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016). https://doi.org/10.1109/TMI.2016.2529665. ISSN 0278-0062, 1558-254X. http://ieeexplore.ieee.org/document/7460968/. Accessed 07 Mar 2019

    Article  Google Scholar 

  4. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution, p. 9 (2001). https://pubmed.ncbi.nlm.nih.gov/11531144/#:~:text=Quantification%20of%20Histochemical%20Staining%20by%20Color%20Deconvolution%20-,samples%20stained%20with%20up%20to%20three%20different%20

  5. LeFevre, M.E., et al.: Frequency of black pigment in livers and spleens of coal workers: correlation with pulmonary pathology and occupational information. Hum. Pathol. 13(12), 1121–1126 (1982). https://doi.org/10.1016/S0046-8177(82)80250-5. ISSN 0046-8177. http://www.sciencedirect.com/science/article/pii/S0046817782802505

    Article  Google Scholar 

  6. Alsubaie, N., Raza, S.E.A., Rajpoot, N.: Stain deconvolution of histology images via independent component analysis in the wavelet do main. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 803–806, April 2016. https://doi.org/10.1109/ISBI.2016.7493388

  7. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110, June 2009. https://doi.org/10.1109/ISBI.2009.5193250

  8. Gavrilovic, M., et al.: Blind color decomposition of histological images. IEEE Trans. Med. Imaging 32(6), 983–994 (2013). https://doi.org/10.1109/TMI.2013.2239655. ISSN 0278-0062

    Article  Google Scholar 

  9. Kather, J.N., et al.: New colors for histology: optimized bivariate color maps increase perceptual contrast in histological images. PLoS ONE 10(12), e0145572 (2015). https://doi.org/10.1371/journal.pone.0145572. Ed. by Jonathan A Coles. ISSN 1932-6203. https://dx.plos.org/10.1371/journal.pone.0145572. Accessed 07 Mar 2019

    Article  Google Scholar 

  10. Trahearn, N., et al.: Multi-class stain separation using independent component analysis. In: Gurcan, M.N., Madabhushi, A. (eds.) Orlando, Florida, United States, p. 94200J, March 2015. https://doi.org/10.1117/12.2081933. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2081933. Accessed 07 Mar 2019

  11. Alsubaie, N., et al.: Stain deconvolution using statistical analysis of multi-resolution stain colour representation. PLoS ONE 12(1), e0169875 (2017). https://doi.org/10.1371/journal.pone.0169875. Ed. by Cesario Bianchi. ISSN 1932-6203. https://dx.plos.org/10.1371/journal.pone.0169875. Accessed 07 Mar 2019

    Article  Google Scholar 

  12. Rabinovich, A., et al.: Unsupervised color decomposition of histologically stained tissue samples. In: Advances in Neural Information Processing Systems (2004). ISSN 10495258

    Google Scholar 

  13. McCann, M.T., et al.: Algorithm and benchmark dataset for stain separation in histology images. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 3953–3957. IEEE (2014)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Invest NI, the Natural Science Foundation of Jiangsu Province, China under Grant No. BK20170443 and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China under Grant No. 17KJB520030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moyes, A., Zhang, K., Ji, M., Zhou, H., Crookes, D. (2020). Unsupervised Deep Learning for Stain Separation and Artifact Detection in Histopathology Images. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics