Skip to main content

A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1248))

Abstract

Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging is the current gold standard for assessing myocardium viability for patients diagnosed with myocardial infarction, myocarditis or cardiomyopathy. This imaging method enables the identification and quantification of myocardial tissue regions that appear hyper-enhanced. However, the delineation of the myocardium is hampered by the reduced contrast between the myocardium and the left ventricle (LV) blood-pool due to the gadolinium-based contrast agent. The balanced-Steady State Free Precession (bSSFP) cine CMR imaging provides high resolution images with superior contrast between the myocardium and the LV blood-pool. Hence, the registration of the LGE CMR images and the bSSFP cine CMR images is a vital step for accurate localization and quantification of the compromised myocardial tissue. Here, we propose a Spatial Transformer Network (STN) inspired convolutional neural network (CNN) architecture to perform supervised registration of bSSFP cine CMR and LGE CMR images. We evaluate our proposed method on the 2019 Multi-Sequence Cardiac Magnetic Resonance Segmentation Challenge (MS-CMRSeg) dataset and use several evaluation metrics, including the center-to-center LV and right ventricle (RV) blood-pool distance, and the contour-to-contour blood-pool and myocardium distance between the LGE and bSSFP CMR images. Specifically, we showed that our registration method reduced the bSSFP to LGE LV blood-pool center distance from 3.28 mm before registration to 2.27 mm post registration and RV blood-pool center distance from 4.35 mm before registration to 2.52 mm post registration. We also show that the average surface distance (ASD) between bSSFP and LGE is reduced from 2.53 mm to 2.09 mm, 1.78 mm to 1.40 mm and 2.42 mm to 1.73 mm for LV blood-pool, LV myocardium and RV blood-pool, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benjamin, E.J., et al.: Heart disease and stroke statistics-2017 update: a report from the american heart association. Circulation 135(10), e146–e603 (2017)

    Article  Google Scholar 

  2. Chen, C., et al.: Unsupervised multi-modal style transfer for cardiac MR segmentation. arXiv preprint arXiv:1908.07344 (2019)

  3. Chenoune, Y., et al.: Rigid registration of delayed-enhancement and cine cardiac MR images using 3D normalized mutual information. In: 2010 Computing in Cardiology, pp. 161–164. IEEE (2010)

    Google Scholar 

  4. Dangi, S., Linte, C.A., Yaniv, Z.: Cine cardiac MRI slice misalignment correction towards full 3D left ventricle segmentation. In: Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10576, p. 1057607. International Society for Optics and Photonics (2018)

    Google Scholar 

  5. Dangi, S., Linte, C.A., Yaniv, Z.: A distance map regularized CNN for cardiac cine MR image segmentation. Med. Phys. 46(12), 5637–5651 (2019)

    Article  Google Scholar 

  6. Dangi, S., Yaniv, Z., Linte, C.A.: Left ventricle segmentation and quantification from cardiac cine MR images via multi-task learning. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 21–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_3

    Chapter  Google Scholar 

  7. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  8. Guo, F., Li, M., Ng, M., Wright, G., Pop, M.: Cine and multicontrast late enhanced MRI registration for 3D heart model construction. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 49–57. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_6

    Chapter  Google Scholar 

  9. Hasan, S.K., Linte, C.A.: CondenseUNet: a memory-efficient condensely-connected architecture for bi-ventricular blood pool and myocardium segmentation. In: Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 11315, p. 113151J. International Society for Optics and Photonics (2020)

    Google Scholar 

  10. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  11. Juan, L.J., Crean, A.M., Wintersperger, B.J.: Late gadolinium enhancement imaging in assessment of myocardial viability: techniques and clinical applications. Radiol. Clin. 53(2), 397–411 (2015)

    Article  Google Scholar 

  12. Khalil, A., Ng, S.C., Liew, Y.M., Lai, K.W.: An overview on image registration techniques for cardiac diagnosis and treatment. Cardiol. Res. Pract. 2018, 1437125 (2018)

    Article  Google Scholar 

  13. Lee, M.C.H., Oktay, O., Schuh, A., Schaap, M., Glocker, B.: Image-and-spatial transformer networks for structure-guided image registration. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 337–345. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_38

    Chapter  Google Scholar 

  14. Liu, Y., Wang, W., Wang, K., Ye, C., Luo, G.: An automatic cardiac segmentation framework based on multi-sequence MR image. arXiv preprint arXiv:1909.05488 (2019)

  15. Campello, V.M., Martín-Isla, C., Izquierdo, C., Petersen, S.E., Ballester, M.A.G., Lekadir, K.: Combining multi-sequence and synthetic images for improved segmentation of late gadolinium enhancement cardiac MRI. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 290–299. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_31

    Chapter  Google Scholar 

  16. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

  17. Tao, X., Wei, H., Xue, W., Ni, D.: Segmentation of multimodal myocardial images using shape-transfer GAN. arXiv preprint arXiv:1908.05094 (2019)

  18. Upendra, R.R., Dangi, S., Linte, C.A.: An adversarial network architecture using 2D U-Net models for segmentation of left ventricle from cine cardiac MRI. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 415–424. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_45

    Chapter  Google Scholar 

  19. Upendra, R.R., Dangi, S., Linte, C.A.: Automated segmentation of cardiac chambers from cine cardiac MRI using an adversarial network architecture. In: Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 11315, p. 113152Y. International Society for Optics and Photonics (2020)

    Google Scholar 

  20. Wei, D., Sun, Y., Chai, P., Low, A., Ong, S.H.: Myocardial segmentation of late gadolinium enhanced MR images by propagation of contours from cine MR images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 428–435. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_53

    Chapter  Google Scholar 

  21. Zhuang, X.: Multivariate mixture model for cardiac segmentation from multi-sequence MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 581–588. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_67

    Chapter  Google Scholar 

  22. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award No. R35GM128877 and by the Office of Advanced Cyber-infrastructure of the National Science Foundation under Award No. 1808530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshan Reddy Upendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Upendra, R.R., Simon, R., Linte, C.A. (2020). A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics