Advertisement

CT Scan Registration with 3D Dense Motion Field Estimation Using LSGAN

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1248)

Abstract

This paper reports on a new CT volume registration method, using 3D Convolutional Neural Networks (CNN). The proposed method uses the Least Square Generative Adversarial Network (LSGAN) model consisting of the Contraction-Expansion registration network as the LSGAN’s generator and a deep 3D CNN classification network as the LSGAN’s discriminator. The training of the generator is performed first on its own, using Charbonnier and smoothness loss functions, with progressive weights update moving from lower to higher resolution layers of the Expander. Subsequently, the complete network (Contraction-Expansion with the Discriminator) is trained as a LSGAN network. For the training, CREATIS and COPDgene datasets have been used in a self-supervised paradigm, using 3D warping of the moving volume to estimate the error with respect to the reference volume. The input to the network has 256 × 256 × 128 × 2 voxels and the output is displacement field of 128 × 128 × 64 × 3 voxels. The Contraction-Expansion registration network, on its own, achieves mean error of 1.30 mm with 1.70 standard deviation (SD) on the DIR-LAB dataset. When the whole proposed LSGAN network is used, the mean error is further reduced to 1.13 mm with 0.67 (SD). Therefore, the use of the GAN paradigm reduces the mean error by approximately 15%, providing the state-of-the-art performance.

Keywords

Image registration Convolutional neural network Generative adversarial network 

References

  1. 1.
    Sentker, T., Madesta, F., Werner, R.: GDL-FIRE4D: deep learning-based fast 4D CT image registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 765–773. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00928-1_86CrossRefGoogle Scholar
  2. 2.
    Rosu, M., Hugo, G.D.: Advances in 4D radiation therapy for managing respiration: part II–4D treatment planning. Zeitschrift für Medizinische Physik. 22(4), 272–280 (2012)CrossRefGoogle Scholar
  3. 3.
    Yamamoto, T., Kabus, S., Bal, M., Keall, P., Benedict, S., Daly, M.: The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. Radiother. Oncol. 118(2), 227–231 (2016)CrossRefGoogle Scholar
  4. 4.
    Eppenhof, K.A., Pluim, J.P.: Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks. J. Med. Imaging 5(2), 024003 (2018)CrossRefGoogle Scholar
  5. 5.
    Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration–a deep learning approach. NeuroImage 158, 378–396 (2017)CrossRefGoogle Scholar
  6. 6.
    Hu, Y., et al.: Adversarial deformation regularization for training image registration neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 774–782. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00928-1_87CrossRefGoogle Scholar
  7. 7.
    Yan, P., Xu, S., Rastinehad, A.R., Wood, B.J.: Adversarial image registration with application for MR and TRUS image fusion. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 197–204. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00919-9_23CrossRefGoogle Scholar
  8. 8.
    Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised deformable registration for multi-modal images via disentangled representations. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 249–261. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-20351-1_19CrossRefGoogle Scholar
  9. 9.
    Tanner, C., Ozdemir, F., Profanter, R., Vishnevsky, V., Konukoglu, E., Goksel, O.: Generative adversarial networks for MR-CT deformable image registration. arXiv preprint arXiv:1807.07349, 19 July 2018
  10. 10.
    Mahapatra, D., Sedai, S., Garnavi, R.: Elastic registration of medical images with GANs. arXiv preprint arXiv:1805.02369, 7 May 2018
  11. 11.
    Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)CrossRefGoogle Scholar
  12. 12.
    Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059, 11 June 2016Google Scholar
  13. 13.
    Alansary, A., et al.: Evaluating reinforcement learning agents for anatomical landmark detection. Med. Image Anal. 53, 156–164 (2019)CrossRefGoogle Scholar
  14. 14.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 4 September 2014
  15. 15.
    Barron, J.T.: A general and adaptive robust loss function. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4331–4339 (2019)Google Scholar
  16. 16.
    Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)Google Scholar
  17. 17.
    Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)Google Scholar
  18. 18.
    Vandemeulebroucke, J., Bernard, O., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT. Med. Phys. 39(2), 1006–1015 (2012)CrossRefGoogle Scholar
  19. 19.
    Castillo, R., et al.: A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive. Phys. Med. Biol. 58(9), 2861 (2013)CrossRefGoogle Scholar
  20. 20.
    Castillo, R., et al.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54(7), 1849 (2009)CrossRefGoogle Scholar
  21. 21.
    Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Computer Vision and Machine Learning (CVML) Group, School of EngineeringUniversity of Central LancashirePrestonUK

Personalised recommendations