Skip to main content

DeepSplit: Segmentation of Microscopy Images Using Multi-task Convolutional Networks

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2020)

Abstract

Accurate segmentation of cellular structures is critical for automating the analysis of microscopy data. Advances in deep learning have facilitated extensive improvements in semantic image segmentation. In particular, U-Net, a model specifically developed for biomedical image data, performs multi-instance segmentation through pixel-based classification. However, approaches based on U-Net tend to merge touching cells in dense cell cultures, resulting in under-segmentation. To address this issue, we propose DeepSplit; a multi-task convolutional neural network architecture where one encoding path splits into two decoding branches. DeepSplit first learns segmentation masks, then explicitly learns the more challenging cell-cell contact regions. We test our approach on a challenging dataset of cells that are highly variable in terms of shape and intensity. DeepSplit achieves 90% cell detection coefficient and 90% Dice Similarity Coefficient (DSC) which is a significant improvement on the state-of-the-art U-Net that scored 70% and 84% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation (2015). arXiv:1511.00561

  2. Böhm, A., Ücker, A., Jäger, T., Ronneberger, O., Falk, T.: ISOODL: instance segmentation of overlapping biological objects using deep learning. In: Proceedings of International Symposium on Biomedical Imaging. IEEE (2018)

    Google Scholar 

  3. Caicedo, J., et al.: Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. J. Quant. Sci. 95(9), 952–965 (2019)

    Google Scholar 

  4. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2016, pp. 2487–2496 (2016)

    Google Scholar 

  5. Dima, A.A., et al.: Comparison of segmentation algorithms for fluorescence microscopy images of cells. J. Quant. Cell Sci. 79A(7), 545–559 (2011)

    Google Scholar 

  6. Fan, M., Rittscher, J.: Global probabilistic models for enhancing segmentation with convolutional networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging, pp. 1234–1238. IEEE (2018)

    Google Scholar 

  7. Fu, J., Liu J., Wang, Y., Zhou, J., Wang, C., Lu, H.: Stacked deconvolutional network for semantic segmentation. IEEE Trans. Image Process. (2019)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2017, pp. 2961–2969 (2017)

    Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  10. J’egou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11–19 (2017)

    Google Scholar 

  11. Luxenburg, C., Zaidel-Bar, R.: From cell shape to cell fate via the cytoskeleton - insights from the epidermis. Exp. Cell Res. 378(2), 232–237 (2019). https://doi.org/10.1016/j.yexcr.2019.03.016

    Article  Google Scholar 

  12. Milletari, F., Navab, N., Ahmadi, S.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of International Conference on 3D Vision, pp. 565–571 (2016)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Sailem, H., Rittscher, J., Pelkmans, L.: KCML: a machine-learning framework for inference of multi-scale gene functions from genetic perturbation screens. Mol. Syst. Biol. 16(3), e9083 (2020)

    Article  Google Scholar 

  15. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of Seventh International Conference on Document Analysis and Recognition, pp. 958–963 (2003)

    Google Scholar 

  16. Taghanaki, S., Abhishek, K., Cohen, J., Cohen-Adad, J., Hamarneh, G.: Deep semantic segmentation of natural and medical images: a review (2019). arXiv preprint arXiv:1910.07655

  17. Vicar, T., et al.: Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison. BMC Bioinf. 20(1), 360 (2019). https://doi.org/10.1186/s12859-019-2880-8

    Article  Google Scholar 

  18. Wu, Z., Shen, C., Van Den Hengel, A.: Wider or deeper: revisiting the resnet model for visual recognition. Pattern Recogn. 90, 119–133 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Sailem .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Fig. 5.
figure 5

Branch-Net architecture. The orange blocks highlight the additional convolutional layers. (Color figure online)

Fig. 6.
figure 6

Double-U-Net architecture. Orange highlights the additional U used for separation. (Color figure online)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torr, A., Basaran, D., Sero, J., Rittscher, J., Sailem, H. (2020). DeepSplit: Segmentation of Microscopy Images Using Multi-task Convolutional Networks. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics