Skip to main content

Healthy Worms

  • Chapter
  • First Online:
Explaining Health Across the Sciences

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 12))

  • 554 Accesses

Abstract

Health is often seen as the attractive opposite to disease but what are the molecular mechanisms that underpin health and can we target these pathways to improve health? Model organisms have been instrumental in defining the molecular genetics of complex biological processes, including longevity, and now they are increasingly being used to investigate health. In this chapter, we review some of the insights that have been gained by studying health and healthspan in the soil nematode Caenorhabditis elegans. Interestingly, several gene mutations and interventions have been shown to improve health in C. elegans offering possibilities of translation to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alavez S, Vantipalli MC, Zucker DJ, Klang IM, Lithgow GJ (2011) Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472(7342):226–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ (2008) Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell 7(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Bansal A, Zhu LJ, Yen K, Tissenbaum HA (2015) Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc Natl Acad Sci USA 112(3):277

    Article  CAS  Google Scholar 

  • Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 15(3):627–634

    Article  CAS  PubMed  Google Scholar 

  • Benedetti MG, Foster AL, Vantipalli MC, White MP, Sampayo JN, Gill MS, Olsen A, Lithgow GJ (2008) Compounds that confer thermal stress resistance and extended lifespan. Exp Gerontol 43(10):882–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MK, Evans JL, Luo Y (2006) Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav 85(3):620–628

    Article  CAS  PubMed  Google Scholar 

  • Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med 5(9):1300–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadwell K (2013) Bacteria, it’s what’s for dinner, pp 627–628

    Google Scholar 

  • Chen C-H, Chen Y-C, Jiang H-C, Chen C-K, Pan C-L (2013a) Neuronal aging: learning from C. elegans. J Mol Signal 8(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen D, Li PW, Goldstein BA, Cai W, Thomas EL, Chen F, Hubbard AE, Melov S, Kapahi P (2013b) Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans. Cell Rep 5(6):1600–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow DK, Glenn CF, Johnston JL, Goldberg IG, Wolkow CA (2006) Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 41(3):252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churgin MA, Jung S-K, Yu C-C, Chen X, Raizen DM, Fang-Yen C (2017) Longitudinal imaging of in a microfabricated device reveals variation in behavioral decline during aging. eLife 6

    Google Scholar 

  • Coburn C, Allman E, Mahanti P, Benedetto A, Cabreiro F, Pincus Z, Matthijssens F, Araiz C, Mandel A, Vlachos M, Edwards SA, Fischer G, Davidson A, Pryor RE, Stevens A, Slack FJ, Tavernarakis N, Braeckman BP, Schroeder FC, Nehrke K, Gems D (2013) Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans. PLOS Biol

    Google Scholar 

  • Collins JJ, Huang C, Hughes S, Kornfeld K (2008) The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook Online Rev C. Elegans Biol, 1–21

    Google Scholar 

  • Corsi AK (2006) A biochemist’s guide to Caenorhabditis elegans. Anal Biochem 359(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CSC (1998) Genome sequence of the Nematode C. elegans: a platform for investigating biology. Science 282(5396):2012

    Article  Google Scholar 

  • Cypser JR, Tedesco P, Johnson TE (2006) Hormesis and aging in Caenorhabditis elegans. Exp Gerontol 41(10):935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BO, Anderson GL, Dusenbery DB (1982) Total luminescence spectroscopy of fluorescence changes during aging in Caenorhabditis elegans. Biochemistry 21(17):4089–4095

    Article  CAS  PubMed  Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19(6):349–364

    Article  CAS  PubMed  Google Scholar 

  • Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9(7)

    Google Scholar 

  • Edwards C, Canfield J, Copes N, Rehan M, Lipps D, Bradshaw PC (2014) D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging (Albany NY) 6(8):621–644

    Article  CAS  Google Scholar 

  • Edwards C, Canfield J, Copes N, Brito A, Rehan M, Lipps D, Brunquell J, Westerheide SD, Bradshaw PC (2015) Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet 16(1)

    Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292(5515):288–290

    Article  CAS  PubMed  Google Scholar 

  • Fernando G, Monsalve Gabriela C, Vincent T, Ryoichi S, Emily W, Laura L, Srinivasan Chandra R, Alison F, Clarke Catherine F (2012) Delayed accumulation of intestinal coliform bacteria enhances life span and stress resistance in Caenorhabditis elegans fed respiratory deficient E. coli. BMC Microbiol 12(1):300

    Article  CAS  Google Scholar 

  • Fisher AL (2004) Of worms and women: sarcopenia and its role in disability and mortality. J Am Geriatr Soc 52(7):1185–1190

    Article  PubMed  Google Scholar 

  • Forge TA, Macguidwin AE (1989) Nematode autofluorescence and its use as an indicator of viability. J Nematol 21(3):399–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118(1):75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garigan D, Hsu A-L, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161(3):1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD, Calderwood SB, Ruvkun G, Ausubel FM (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300(5627):1921

    Article  CAS  PubMed  Google Scholar 

  • Gelino S, Chang JT, Kumsta C, She X, Davis A, Nguyen C, Panowski S, Hansen M (2016) Intestinal autophagy improves healthspan and longevity in C. elegans during dietary restriction. PLoS Genet 12(7):e1006135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150(1):129–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gems D, Riddle DL (2000) Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154(4):1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4(3):127–137

    Article  CAS  PubMed  Google Scholar 

  • Grompone G, Martorell P, Llopis S, Gonzalez N, Genoves S, Mulet AP, Fernandez-Calero T, Tiscornia I, Bollati-Fogolin M, Chambaud I, Foligne B, Montserrat A, Ramon D (2012) Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS ONE 7(12):e52493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. Gerontological Society of America, Washington, DC, pp M85–M94

    Google Scholar 

  • Gusarov I, Pani B, Gautier L, Smolentseva O, Eremina S, Shamovsky I, Katkova-Zhukotskaya O, Mironov A, Nudler E (2017) Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress. Nat Commun 8:15868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahm J-H, Kim S, Diloreto R, Shi C, Lee S-J, Murphy C, Nam H (2015) C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat Commun 6(1):8919

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Kennedy BK (2016) Does longer lifespan mean longer healthspan? Trends Cell Biol 26(8):565–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4(2):e24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen M, Rubinsztein DC, Walker DW (2018) Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol 19(9):579–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419(6909):808

    Article  CAS  PubMed  Google Scholar 

  • Hobert O, Hobart O (2003) Behavioral plasticity in C. elegans: paradigms, circuits, genes. Wiley Subscription Services, Inc., A Wiley Company, New York, pp 203–223

    Google Scholar 

  • Honda Y, Tanaka M, Honda S (2010) Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9(4):558–569

    Article  CAS  PubMed  Google Scholar 

  • Hosono R, Sato Y, Aizawa S-I, Mitsui Y (1980) Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans. Exp Gerontol 15(4):285–289

    Article  CAS  PubMed  Google Scholar 

  • Hsu A-L, Feng Z, Hsieh M-Y, Xu XZS (2009) Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans. Neurobiol Aging 30(9):1498–1503

    Article  PubMed  Google Scholar 

  • Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6(15):1837–1849

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci USA 101(21):8084–8089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes SE, Evason K, Xiong C, Kornfeld K (2007) Genetic and pharmacological factors that influence reproductive aging in nematodes. PLoS Genet 3(2):e25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes SE, Huang C, Kornfeld K (2011) Identification of mutations that delay somatic or reproductive aging of Caenorhabditis elegans. Genetics 189(1):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda T, Yasui C, Hoshino K, Arikawa K, Nishikawa Y (2007) Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella enterica serovar enteritidis. Appl Environ Microbiol 73(20):6404–6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MS, Mondal MNI, Tareque MI, Rahman MA, Hoque MN, Ahmed MM, Khan HTA (2018) Correlates of healthy life expectancy in low- and lower-middle-income countries. BMC Public Health 18(1):476

    Google Scholar 

  • Iwasa H, Yu S, Xue J, Driscoll M (2010) Novel EGF pathway regulators modulate C. elegans healthspan and lifespan via EGF receptor, PLC-γ, and IP3R activation. Aging Cell 9(4):490–505

    Google Scholar 

  • Jadad AR, O’Grady L (2008) How should health be defined? Brit Med J Publ Group

    Google Scholar 

  • Jenkins NL, McColl G, Lithgow GJ (2004) Fitness cost of extended lifespan in Caenorhabditis elegans. Proc Royal Soc B Biol Sci 271(1556):2523–2526

    Article  Google Scholar 

  • Johnson TE, Wood WB (1982) Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci USA 79(21):6603–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, Kaeberlein M (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5(6):487–494

    Article  CAS  PubMed  Google Scholar 

  • Katic M, Kahn CR (2005) The role of insulin and IGF-1 signaling in longevity. Cell Mol Life Sci 62(3):320–343

    Article  CAS  PubMed  Google Scholar 

  • Kauffman AL, Ashraf JM, Corces-Zimmerman M, Landis JN, Murphy CT, Dubnau J (2010) Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biol 8(5):e1000372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keith SA, Amrit FRG, Ratnappan R, Ghazi A (2014) The C. elegans healthspan and stress-resistance assay toolkit. Methods 68(3):476–486

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Moon Y (2019) Worm-based alternate assessment of probiotic intervention against gut barrier infection. Nutrients 11(9):2146

    Article  CAS  PubMed Central  Google Scholar 

  • Kim SH, Kim BK, Park S, Park SK (2019) Phosphatidylcholine extends lifespan via DAF-16 and reduces amyloid-beta-induced toxicity in Caenorhabditis elegans. Oxid Med Cell Longev 2019:2860642

    PubMed  PubMed Central  Google Scholar 

  • Kim W, Underwood RS, Greenwald I, Shaye DD (2018) OrthoList 2: a new comparative genomic analysis of human and genes. Genetics 210(2):445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6(6):413–429

    Article  CAS  PubMed  Google Scholar 

  • Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22(3–4):279–286

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Egan BM, Kocsisova Z, Schneider DL, Murphy JT, Diwan A, Kornfeld K (2019) Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Dev Cell 49(1):100–17.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumsta C, Hansen M (2017) Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy. Autophagy 13(6):1076–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumsta C, Chang JT, Lee R, Tan EP, Yang Y, Loureiro R, Choy EH, Lim SHY, Saez I, Springhorn A, Hoppe T, Vilchez D, Hansen M (2019) The autophagy receptor p62/SQST-1 promotes proteostasis and longevity in C. elegans by inducing autophagy. Nat Commun 10(1):5648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laranjeiro R, Harinath G, Hewitt JE, Hartman JH, Royal MA, Meyer JN, Vanapalli SA, Driscoll M (2019) Swim exercise in extends neuromuscular and gut healthspan, enhances learning ability, and protects against neurodegeneration. Proc Natl Acad Sci USA 116(47):23829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90(19):8905-8909

    Google Scholar 

  • Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, Zou S (2006) Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5(6):515–524

    Article  CAS  PubMed  Google Scholar 

  • Leiser S, Jafari G, Primitivo M, Sutphin G, Dong J, Leonard A, Fletcher M, Kaeberlein M (2016) Age-associated vulval integrity is an important marker of nematode healthspan. Age 38(5–6):419–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy M, Mosser T, Manière X, Alvarez DF, Matic I (2012) Pathogen-induced Caenorhabditis elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses. BMC Evol Biol 12(1):187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278(5341):1319–1322

    Article  CAS  PubMed  Google Scholar 

  • Lithgow GJ, Kirkwood TB (1996) Mechanisms and evolution of aging. Science 273(5271):80

    Article  CAS  PubMed  Google Scholar 

  • Lithgow GJ, White TM, Hinerfeld DA, Johnson TE (1994) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol 49(6):B270–B276

    Article  CAS  PubMed  Google Scholar 

  • Lucanic M, Held JM, Vantipalli MC, Klang IM, Graham JB, Gibson BW, Lithgow GJ, Gill MS (2011) N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 473(7346):226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Kleemann GA, Ashraf JM, Shaw WM, Murphy CT (2010) TGF-beta and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell 143(2):299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luyten W, Antal P, Braeckman B, Bundy J, Cirulli F, Fang-Yen C, Fuellen G, Leroi A, Liu Q, Martorell P, Metspalu A, Perola M, Ristow M, Saul N, Schoofs L, Siems K, Temmerman L, Smets T, Wolk A, Rattan S (2016) Ageing with elegans: a research proposal to map healthspan pathways. Biogerontology 17(4):771–782

    Article  PubMed  Google Scholar 

  • McGee MD, Weber D, Day N, Vitelli C, Crippen D, Herndon LA, Hall DH, Melov S (2011) Loss of intestinal nuclei and intestinal integrity in aging C. elegans. Aging Cell 10(4):699–710

    Article  CAS  PubMed  Google Scholar 

  • Mendenhall AR, Wu D, Park S-K, Cypser JR, Tedesco PM, Link CD, Phillips PC, Johnson TE (2011) Genetic dissection of late-life fertility in Caenorhabditis elegans. J Gerontol Series A: Biomed Sci Med Sci 66(8):842–854

    Google Scholar 

  • Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 99(16):10417–10422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosbech M-B, Kruse R, Harvald EB, Olsen ASB, Gallego SF, Hannibal-Bach H, Ejsing CS, Faergeman NJ (2013) Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans. PLoS ONE 8(7):e70087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami H, Bessinger K, Hellmann J, Murakami S (2005) Aging-dependent and -independent modulation of associative learning behavior by insulin/insulin-like growth factor-1 signal in Caenorhabditis elegans. J Neurosci 25(47):10894–10904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nance J, Frokjaer-Jensen C (2019) The Caenorhabditis elegans transgenic toolbox. Genetics 212(4):959–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newell Stamper BL, Cypser JR, Kechris K, Kitzenberg DA, Tedesco PM, Johnson TE (2018) Movement decline across lifespan of Caenorhabditis elegans mutants in the insulin/insulin‐like signaling pathway. Aging Cell 17(1):e12704

    Google Scholar 

  • O’Rourke EJ, Kuballa P, Xavier R, Ruvkun G (2013) ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy. Genes Dev 27(4):429–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsen A, Gill MS (2017) Ageing: lessons from C. elegans. Springer International Publishing, Cham

    Google Scholar 

  • Olsen A, Vantipalli MC, Lithgow GJ (2006a) Checkpoint proteins control survival of the postmitotic cells in Caenorhabditis elegans. Science 312(5778):1381–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen A, Vantipalli M, Lithgow G (2006b) Lifespan extension of Caenorhabditis elegans following repeated mild hormetic heat treatments. Biogerontology 7(4):221–230

    Article  PubMed  Google Scholar 

  • Osoba M, Rao A, Agrawal S, Lalwani A (2019) Balance and gait in the elderly: a contemporary review. Laryngoscope Invest Otolaryngol 4(1):143–153

    Article  Google Scholar 

  • Pan C-L, Peng C-Y, Chen C-H, McIntire S (2011) Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons. Proc Natl Acad Sci USA 108(22):9274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12(16):2488–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MR, Yun HS, Son SJ, Oh S, Kim Y (2014) Short communication: development of a direct in vivo screening model to identify potential probiotic bacteria using Caenorhabditis elegans. J Dairy Sci 97(11):6828–6834

    Article  CAS  PubMed  Google Scholar 

  • Pincus Z, Mazer TC, Slack FJ (2016) Autofluorescence as a measure of senescence in C. elegans: look to red, not blue or green. Aging (Albany NY) 8(5)

    Google Scholar 

  • Pitt JN, Strait NL, Vayndorf EM, Blue BW, Tran CH, Davis BEM, Huang K, Johnson BJ, Lim KM, Liu S, Nikjoo A, Vaid A, Wu JZ, Kaeberlein M (2019) WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans. GeroScience 41(6):961

    Article  PubMed  PubMed Central  Google Scholar 

  • Podshivalova K, Kerr RA, Kenyon C (2017) How a mutation that slows aging can also disproportionately extend end-of-life decrepitude. Cell Rep 19(3):441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portal-Celhay C, Bradley Ellen R, Blaser Martin J (2012) Control of intestinal bacterial proliferation in regulation of lifespan in Caenorhabditis elegans. BMC Microbiol 12(1):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu M, Xu K, Li Y, Wong G, Wang D (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126

    Google Scholar 

  • Rattan SIS (2018) Biogerontology: research status, challenges and opportunities. Acta Bio-medica: Atenei Parmensis 89(2):291–301

    CAS  Google Scholar 

  • Revtovich AV, Lee R, Kirienko NV (2019) Interplay between mitochondria and diet mediates pathogen and stress resistance in Caenorhabditis elegans. PLoS Genet 15(3):e1008011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radical Biol Med 51(2):327–336

    Article  CAS  Google Scholar 

  • Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45(6):410–418

    Article  CAS  PubMed  Google Scholar 

  • Rowe JW, Kahn RL (1987) Human aging: usual and successful. Science (New York, N.Y.) 237(4811):143–149

    Google Scholar 

  • Sampayo JN, Olsen A, Lithgow GJ (2003) Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2(6):319–326

    Article  CAS  PubMed  Google Scholar 

  • Seo Y, Kingsley S, Walker G, Mondoux MA, Tissenbaum HA (2018) Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans. Proc Natl Acad Sci USA 115(12):E2791–E2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmookler Reis RJ, Xu L, Lee H, Chae M, Thaden JJ, Bharill P, Tazearslan C, Siegel E, Alla R, Zimniak P, Ayyadevara S (2011) Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging 3(2):125–147

    Google Scholar 

  • Sonowal R, Swimm A, Sahoo A, Luo L, Matsunaga Y, Wu Z, Bhingarde JA, Ejzak EA, Ranawade A, Qadota H, Powell DN, Capaldo CT, Flacker JM, Jones RM, Benian GM, Kalman D (2017) Indoles from commensal bacteria extend healthspan. Proc Natl Acad Sci USA 114(36):E7506–E7515

    Google Scholar 

  • Steger KA, Avery L (2004) The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 167(2):633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, Kennedy BK, Kaeberlein M (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7(3):394–404

    Article  CAS  PubMed  Google Scholar 

  • Stroustrup N, Ulmschneider BE, Nash ZM, López Moyado IF, Apfeld J, Fontana W (2013) The C. elegans lifespan machine. Nat Methods 10(7)

    Google Scholar 

  • Stutz K, Kaech A, Aebi M, Künzler M, Hengartner MO (2015) Disruption of the C. elegans intestinal brush border by the fungal lectin CCL2 phenocopies dietary lectin toxicity in mammals. PLoS ONE

    Google Scholar 

  • Sullivan DF (1971) A single index of mortality and morbidity. HSMHA Health Rep 86(4):347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Wu H, Cong M, Zhan J, Li F (2020) Meta-analytic evidence for the anti-aging effect of hormesis on Caenorhabditis elegans. Aging 12(3)

    Google Scholar 

  • Tank EMH, Rodgers KE, Kenyon C (2011) Spontaneous age-related neurite branching in Caenorhabditis elegans. J Neurosci 31(25):9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth ML, Melentijevic I, Shah L, Bhatia A, Lu K, Talwar A, Naji H, Ibanez-Ventoso C, Ghose P, Jevince A, Xue J, Herndon LA, Bhanot G, Rongo C, Hall DH, Driscoll M (2012) Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system. J Neurosci Official J Soc Neurosci 32(26):8778–8790

    Google Scholar 

  • van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4(3):e1000027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 292(Pt 2):605–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virk B, Jia J, Maynard CA, Raimundo A, Lefebvre J, Richards SA, Chetina N, Liang Y, Helliwell N, Cipinska M, Weinkove D (2016) Folate acts in E. coli to accelerate C. elegans aging independently of bacterial biosynthesis. Cell Rep 14(7):1611–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ (2000) Evolution of lifespan in C. elegans. Nature 405(6784):296–297

    Article  CAS  PubMed  Google Scholar 

  • Wang HD, Kazemi-Esfarjani P, Benzer S (2004) Multiple-stress analysis for isolation of Drosophila longevity genes. Proc Natl Acad Sci USA 101(34):12610–12615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, O’Rourke E, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science (Washington) 322(5903):957–960

    Article  CAS  Google Scholar 

  • WHO A (2002) Constitution of the World Health Organization. Bull World Health Organ 80(12):983–984

    Google Scholar 

  • Zhao Y, Gilliat AF, Ziehm M, Turmaine M, Wang H, Ezcurra M, Yang C, Phillips G, McBay D, Zhang WB, Partridge L, Pincus Z, Gems D (2017) Two forms of death in ageing Caenorhabditis elegans. Nat Commun 8(1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew S. Gill or Anders Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harders, R.H., Møller, K.V., Mørch, M.G.M., Gill, M.S., Olsen, A. (2020). Healthy Worms. In: Sholl, J., Rattan, S.I. (eds) Explaining Health Across the Sciences. Healthy Ageing and Longevity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-52663-4_20

Download citation

Publish with us

Policies and ethics