Skip to main content

Appendix. Hironaka’s Characteristic Polyhedron. Notes for Novices(B.Schober)

  • Conference paper
  • First Online:
Desingularization: Invariants and Strategy

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2270))

  • 566 Accesses

Abstract

In this appendix, we discuss some of the ideas behind Hironaka’s characteristic polyhedron. In particular, we present pictures that are often hidden in the background.

The goal is to introduce the reader to the notion of Hironaka’s characteristic polyhedron. Existing references often work in the most general setting in order to develop and to prove new interesting results involving the characteristic polyhedron in the greatest possible generality. This has the drawback that one has to handle a heavy load of technicalities, in which a reader, who is inexperienced on the topic, might easily get lost in. While an introduction with all technical details may be found in Cossart et al. (Canonical embedded and non-embedded resolution of singularities for excellent two-dimensional schemes, Lecture Notes in Mathematics, the present monograph, 2013, Chap. 8), we highlight the ideas behind the characteristic polyhedron and behind the notions appearing within its context.

Bernd Schober: Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany e-mail: bernd.schober@uni-oldenburg.de

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a given scheme X which is singular at a point x ∈ X, this setting is obtained by embedding X ⊂ Z into a regular scheme Z and passing to the situation in the local ring \( \mathcal {O}_{Z,x} \) (if such an embedding exists), or if we pass to the completion of \( \mathcal {O}_{X,x} \) and then apply the Cohen structure theorem.

  2. 2.

    In all references known to the author but [CJS], the ordering is (u, y) instead of (y, u). We decided to remain coherent with it, but we warn the reader to be careful, when looking into articles, where the characteristic polyhedron appears.

References

  1. J. Berthomieu, P. Hivert, H. Mourtada, Computing Hironaka’s invariants: Ridge and directrix, in Arithmetic, Geometry, Cryptography and Coding Theory 2009, Contemporary Mathematics, vol. 521 (American Mathematical Society, Providence, 2010), pp. 9–20

    MATH  Google Scholar 

  2. E. Bierstone, P.D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128(2), 207–302 (1997). (English Summary)

    Google Scholar 

  3. V. Cossart, Sur le polyèdre caractéristique d’une singularité. Bull. Soc. Math. France 103, 13–19 (1975)

    Article  MathSciNet  Google Scholar 

  4. V. Cossart, Desingularization of embedded excellent surfaces. Tohoku Math. J. 33, 25–33 (1981)

    Article  MathSciNet  Google Scholar 

  5. V. Cossart. Polyèdre caractéristique d’une singularité. Thèse d’Etat, Université de Paris-Sud, Centre d’Orsay, 1987

    Google Scholar 

  6. V. Cossart, Polyèdre caractéristique et éclatements combinatoires, Rev. Mat. Iberoam. 5, 67–95 (1989)

    Article  MathSciNet  Google Scholar 

  7. V. Cossart, O. Piltant, Resolution of singularities of threefolds in positive characteristic. II. J. Algebra 321(7), 1836–1976 (2009)

    Article  MathSciNet  Google Scholar 

  8. V. Cossart, O. Piltant, Characteristic polyhedra of singularities without completion. Math. Ann. 361, 157–167 (2015). https://doi.org/10.1007/s00208-014-1064-0

    Article  MathSciNet  Google Scholar 

  9. V. Cossart, O. Piltant, Resolution of singularities of arithmetical threefolds. J. Algebra 529, 268–535 (2019)

    Article  MathSciNet  Google Scholar 

  10. V. Cossart, B. Schober, A strictly decreasing invariant for resolution of singularities in dimension two. Publ. Res. Inst. Math. Sci. 56(2), 217–280 (2020)

    Article  MathSciNet  Google Scholar 

  11. V. Cossart, B. Schober, Characteristic polyhedra of singularities without completion: part II. Collect. Math., 1–42 (2020). https://doi.org/10.1007/s13348-020-00291-5

  12. V. Cossart, U. Jannsen, and S. Saito, Desingularization: Invariants and Strategy, Lecture Notes in Mathematics, 2270. (Springer, Berlin, 2020). https://doi.org/10.1007/978-3-030-52640-5.

    Google Scholar 

  13. V. Cossart, O. Piltant, B. Schober, Faîte du cône tangent à une singularité : un théorème oublié. Compt. Rendus Math. 355(4), 455–459 (2017)

    Article  Google Scholar 

  14. V. Cossart, U. Jannsen, B. Schober, Invariance of Hironaka’s characteristic polyhedron. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113(4), 29 (2019). Special edition in honour of Felipe Cano

    Google Scholar 

  15. B. Dietel, A refinement of Hironaka’s additive group schemes for an extended invariant. PhD Thesis, Universität Regensburg (2015). https://epub.uni-regensburg.de/31359/

  16. A. Frühbis-Krüger, L. Ristau, B. Schober, Embedded desingularization for arithmetic surfaces - toward a parallel implementation (2017). Preprint. arXiv: 1712.08131

    Google Scholar 

  17. J. Giraud, Étude Locale des Singularités. Cours de 3e cycle, Orsay, Publication No. 26 (1971–1972). http://portail.mathdoc.fr/PMO/PDF/G_GIRAUD-50.pdf

  18. H. Hironaka, On the characters ν and τ of singularities. J. Math. Kyoto Univ. 7, 19–43 (1967)

    Article  MathSciNet  Google Scholar 

  19. H. Hironaka, Characteristic polyhedra of singularities. J. Math. Kyoto Univ. 7, 251–293 (1967)

    Article  MathSciNet  Google Scholar 

  20. H. Hironaka, Desingularization of excellent surfaces, in Advanced Science Seminar in Algebraic Geometry, (Summer 1967 at Bowdoin College), Mimeographed notes by B. Bennet, Lecture Notes in Mathematics, 1101 (Springer, Berlin, 1984), pp. 99–132.

    Google Scholar 

  21. H. Hironaka, Additive groups associated with ponts of a projective space. Ann. Math. 92, 327–334 (1970)

    Article  MathSciNet  Google Scholar 

  22. H. Hironaka, Idealistic exponents of singularity, in Algebraic Geometry (J. J. Sylvester Symposium, Johns Hopkins University, Baltimore, 1976) (Johns Hopkins University Press, Baltimore, 1977), pp. 52–125

    Google Scholar 

  23. H. Mourtada, B. Schober, A polyhedral characterization of quasi-ordinary singularities. Moscow Math. J. 18(4), 755–785 (2018)

    Article  MathSciNet  Google Scholar 

  24. B. Schober, Characteristic polyhedra of idealistic exponents with history. PhD Thesis, Universität Regensburg, 2013. http://epub.uni-regensburg.de/28877/

  25. B. Schober, Idealistic exponents: Tangent cone, ridge and characteristic polyhedra (2014). Preprint. arXiv: 1410.6541

    Google Scholar 

  26. B. Schober, A polyhedral approach to the invariant of Bierstone and Milman (2014). Preprint. arXiv: 1410.6543

    Google Scholar 

  27. M. Spivakovsky, A counterexample to Hironaka’s “hard” polyhedra game. Publ. Res. Inst. Math. Sci. 18(2), 1009–1012 (1982)

    Article  MathSciNet  Google Scholar 

  28. M. Spivakovsky, A solution to Hironaka’s polyhedra game, in Arithmetic and Geometry, Vol. II. Progress in Mathematics, vol. 36 (Birkhäuser Boston, Boston, 1983), pp. 419–432

    Google Scholar 

  29. B. Teissier, Valuations, deformations, and toric geometry, in Valuation Theory and Its Applications, Vol. II (Saskatoon, SK, 1999). Fields Institute Communications, vol. 33 (American Mathematical Society, Providence, 2003), pp. 361–459

    Google Scholar 

  30. B. Teissier, Overweight deformations of affine toric varieties and local uniformization, in Valuation Theory in Interaction. EMS Series of Congress Reports (European Mathematical Society, Zürich, 2014), pp. 474–565

    Google Scholar 

  31. A. Voitovitch, Reduction to Directrix-near points in resolution of singularities of schemes. PhD Thesis, Universität Regensburg, 2016. https://epub.uni-regensburg.de/33216/

  32. B. Youssin, Newton polyhedra without coordinates. Mem. Amer. Math. Soc. 87(433), i–vi, 1–74 (1990)

    Google Scholar 

  33. B. Youssin, Newton polyhedra of ideals. Mem. Amer. Math. Soc. 87(433), i–vi, 75–99 (1990)

    Google Scholar 

  34. O. Zariski, The concept of a simple point of an abstract algebraic variety. Trans. Amer. Math. Soc. 62, 1–52 (1947)

    Article  MathSciNet  Google Scholar 

  35. D. Zeillinger, A short solution to Hironaka’s polyhedra game, Enseign. Math. (2) 52(1–2), 143–158 (2006)

    Google Scholar 

Download references

Acknowledgements

I thank Vincent Cossart, Uwe Jannsen and Shuji Saito for offering me to write an appendix to their marvelous monograph [CJS] and for their comments on an earlier version of the appendix. Moreover, I thank Dan Abramovich and Bernard Teissier for their very helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cossart, V., Jannsen, U., Saito, S. (2020). Appendix. Hironaka’s Characteristic Polyhedron. Notes for Novices(B.Schober). In: Desingularization: Invariants and Strategy. Lecture Notes in Mathematics, vol 2270. Springer, Cham. https://doi.org/10.1007/978-3-030-52640-5_18

Download citation

Publish with us

Policies and ethics