Skip to main content

Classical Understanding of Overtraining Syndrome

Abstract

As OTS is by definition an unexplained underperformance syndrome, there is inherently not an apparent identified factor or trigger, other than an alleged imbalance between training and resting. None of the proposed theories could fully encompass the pathophysiology of OTS, but at the same time some of these theories had high plausibility to explain at least part of the underlying mechanisms on OTS. As a background for the comprehension of the meaning of the classical theories on OTS, a more comprehensive understanding of OTS is important. OTS syndrome is a consequence of a chronic exposure to a hostile environment, fully depleted of energy and mechanisms of repair, with massive levels of oxidative stress reactive species. This combination forces the organism to undergo multiple adaptive changes in a broad variety of tissues and systems that are strictly necessary in order to maintain survival and functionality, even under highly hostile environment. These adaptations occur and are successful in terms of viability to main both living and functioning, but are highly dysfunctional and troublesome, as they are progressively harmful in the long run and extremely hard to be fully overcome, i.e., the reestablishment of the normal previous reactions become unlikely. This means that athletes with OTS, which are exposed to these aberrant adaptive reactions, are truly difficult to have these maladaptations reversed, which may explain the almost unfeasible complete reversibility of a true OTS process. These maladaptive processes cause several aberrant reactions in all systems, leading to multiple dysfunctions in muscular, hormonal, immunologic, neurological, psychiatric, autonomic, neuromuscular, cardiovascular systems, among which many of these dysfunctions are actually losses of the benefits acquired with exercising, and eventually leading to the key features of OTS.

In regard with biochemical markers, decreased muscular GLUT-4 insulin sensitivity; reduced maximum lactate, leptin, interleukin-6 (IL-6), adiponectin, and tumor necrosis factor alpha (TNF-alpha); prolonged increase of creatine kinase (CK); and decreased growth hormone (GH), cortisol, and prolactin responses to exercise have been reported. Conversely, basal hormones and testosterone-to-cortisol ratio have been shown to be normal in OTS.

In terms of clinical manifestations, fatigue, depression, anger, confusion, tension, and vigor levels in psychological surveys have been consistently shown to be affected in OTS, whereas autonomic parameters, particularly the heart rate variability (HRV), showed inconsistent results in OTS.

The diagnosis of OTS should still be performed using the latest guideline on OTS, despite some important limitations. However, novel biomarkers and diagnostic tolls will be further proposed.

Keywords

  • Overtraining syndrome
  • OTS
  • OT
  • Paradoxical deconditioning syndrome
  • PDS
  • Overreaching
  • Non-functional overreaching
  • NFOR
  • Functional overreaching
  • FOR
  • Burnout of the athlete
  • BSA
  • Underperformance syndrome
  • Unexplained underperformance syndrome
  • Endocrinology of the physical activity and sport
  • Sports endocrinology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-52628-3_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-52628-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2

References

  1. Meeusen R, Duclos M, Foster C, European College of Sport Science, American College of Sports Medicine, et al. Prevention, Diagnosis, and Treatment of the Overtraining Syndrome: Joint Consensus Statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186–205.

    PubMed  CrossRef  Google Scholar 

  2. Rietjens GJ, Kuipers H, Adam JJ, et al. Physiological, biochemical and psychological markers of strenuous training-induced fatigue. Int J Sports Med. 2005;26(1):16–26.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32.

    CrossRef  Google Scholar 

  4. Stamford B. Avoiding and recovering from overtraining. Phys Sportsmed. 1983;11(10):180.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Overtraining of athletes. Phys Sportsmed. 1983;11(6):92–202.

    Google Scholar 

  6. Kreher JB, Schwartz JB. Overtraining syndrome: a practical guide. Sports Health. 2012;4(2):128–38.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Nederhof E, Lemmink KA, Visscher C, Meeusen R, Mulder T. Psychomotor speed: possibly a new marker for overtraining syndrome. Sports Med. 2006;36(10):817–28.

    PubMed  CrossRef  Google Scholar 

  8. Kentta G, Hassmen P, Raglin J. Overtraining and staleness in Swedish age-group athletes: association with training behavior and psychosocial stressors. Int J Sports Med. 2001;2001:460–5.

    CrossRef  Google Scholar 

  9. Mergan W, O’Connor P, Ellickson K, Bradley P. Psychological characterization of the elite female distance runners. Int J Sports Med. 1987;8(Suppl 2):124–31.

    CrossRef  Google Scholar 

  10. Raglin J, Sawamura S, Alexious S, Hassmen P, Kentta G. Training practices and staleness in 13-18 year old swimmers: a cross-cultural study. Pediatr Sports Med. 2000;12:61–70.

    Google Scholar 

  11. Snyder AC. Overtraining and glycogen depletion hypothesis. Med Sci Sports Exerc. 1998;30(7):1146–50.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Gastmann UA, Lehmann MJ. Overtraining and the BCAA hypothesis. Med Sci Sports Exerc. 1998;30(7):1173–8.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Budgett R. Fatigue and underperformance in athletes: the overtraining syndrome. Br J Sports Med. 1998;32:107–10.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  14. Budgett R, Hiscock N, Arida R, et al. The effects of the 5-HT2C agonist mchlorphenylpiperazine on elite athletes with unexplained underperformance syndrome (overtraining). Br J Sports Med. 2010;44:280–3.

    CAS  PubMed  CrossRef  Google Scholar 

  15. Smith LL. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc. 2000;32:317–31.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Castell LM, Poortmans JR, Leclercq R, et al. Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation. Eur J Appl Physiol. 1997;75:47–53.

    CAS  CrossRef  Google Scholar 

  17. Davis JM. Carbohydrates, branched-chain amino acids, and endurance: the central fatigue hypothesis. Int J Sport Nutr. 1995;5(Suppl):S29–38.

    PubMed  CrossRef  Google Scholar 

  18. Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Brain neurotransmitters in fatigue and overtraining. Appl Physiol Nutr Metab. 2007;32(5):857–64.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Walsh NP, Blannin AK, Robson PJ, Gleeson M. Glutamine, exercise and immune function. Links and possible mechanisms. Sports Med. 1998;26(3):177–91.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Halson SL, Jeukendrup AE. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med. 2004;34(14):967–81.

    PubMed  CrossRef  Google Scholar 

  21. Petibois C, Cazorla G, Poortmans JR, Déléris G. Biochemical aspects of overtraining in endurance sports: a review. Sports Med. 2002;32(13):867–78.

    PubMed  CrossRef  Google Scholar 

  22. Hohl R, Ferraresso RL, DeOliveira RB, et al. Development and characterization of na overtraining animal model. Med Sci Sports Exerc. 2009;41(5):1155–63.

    PubMed  CrossRef  Google Scholar 

  23. Kajaia T, Maskhulia L, Chelidze K, Akhalkatsi V, Kakhabrishvili Z. The effects of non-functional overreaching and overtraining on autonomic nervous system function in highly trained athletes. Georgian Med News. 2017;264:97–103.

    Google Scholar 

  24. Kiviniemi AM, Tulppo MP, Hautala AJ, Vanninen E, Uusitalo AL. Altered relationship between R-R interval and R-R interval variability in endurance athletes with overtraining syndrome. Scand J Med Sci Sports. 2014;24(2):e77–85.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Uusitalo AL, Uusitalo AJ, Rusko HK. Heart rate and blood pressure variability during heavy training and overtraining in the female athlete. Int J Sports Med. 2000;21(1):45–53.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Margonis K, Fatouros IG, Jamurtas AZ, et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med. 2007;43(6):901–10.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. J Sport Sci. 2010;28(3):309–17.

    CrossRef  Google Scholar 

  28. Meeusen R, Nederhof E, Buyse L, Roelands B, De Schutter G, Piacentini MF. Diagnosing overtraining in athletes using the two-bout exercise protocol. Br J Sports Med. 2010;44(9):642–8.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Meeusen R, Piacentini MF, Busschaert B, Buyse L, De Schutter G, Stray-Gundersen J. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. Eur J Appl Physiol. 2004;91(2–3):140–6.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Urhausen A, Gabriel HH, Kindermann W. Impaired pituitary hormonal response to exhaustive exercise in overtrained endurance athletes. Med Sci Sports Exerc. 1998;30(3):407–14.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Cadegiani FA, Kater CE. Hormonal aspects of overtraining syndrome: a systematic review. BMC Sports Sci Med Rehabil. 2017;9:14.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  32. Lemon P, Mullin J. Effect of initial muscle glycogen on protein catabolism during exercise. J Appl Physiol. 1980;48:624–9.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Xiao W, Chen P, Dong J. Effects of overtraining on skeletal muscle growth and gene expression. Int J Sports Med. 2012;33(10):846–53.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Angeli A, Minetto M, Dovio A, Paccotti P. The overtraining syndrome in athletes: a stress-related disorder. J Endocrinol Investig. 2004;27(6):603–12.

    CAS  CrossRef  Google Scholar 

  35. Rowbottom D, Keast D, Goodman C, Morton A. The haematological, biochemical and immunological profile of athletes suffering from the overtraining syndrome. Eur J Appl Physiol. 1995;70:502–9.

    CAS  CrossRef  Google Scholar 

  36. Robson P, Blannin A, Walsh N. The effect of an acute period of intense interval training on human neutrophil function and plasma glutamine in endurance-trained male runners. J Physiol. 1999;515:84–5.

    Google Scholar 

  37. Lancaster G, Halson S, Khan Q, et al. Effect of acute exhaustive exercise and a 6-day period of intensified training on immune function in cyclists. J Physiol. 2003;548P:O96.

    Google Scholar 

  38. Halson S, Lancaster G, Jeukendrup A, Gleeson M. Immunological responses to overreaching in cyclists. Med Sci Sports Exerc. 2003;35(5):854–61.

    PubMed  CrossRef  Google Scholar 

  39. Joro R, Uusitalo A, DeRuisseau KC, Atalay M. Changes in cytokines, leptin, and IGF-1 levels in overtrained athletes during a prolonged recovery phase: a case-control study. J Sports Sci. 2017;35(23):2342–9.

    PubMed  CrossRef  Google Scholar 

  40. Steinacker J, Lormes W, Reissnecker S, Liu Y. New aspects of the hormone and cytokine response to training. Eur J Appl Physiol. 2004;91:382–93.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining. Sports Med. 1995;20:251–76.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Wittert G, Livesey J, Espiner E, Donald R. Adaptation of the hypothalamo–pituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc. 1996;28(8):1015–9.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Verde T, Thomas S, Shephard RJ. Potential markers of heavy training in highly trained endurance runners. Br J Sports Med. 1992;26:167–75.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  44. Bishop NC, Gleeson M. Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci. 2009;14:4444–56.

    CAS  CrossRef  Google Scholar 

  45. Gleeson M. Mucosal immune responses and risk of respiratory illness in elite athletes. Exerc Immunol Rev. 2000;6:5–42.

    CAS  PubMed  Google Scholar 

  46. Gleeson M, Bishop N, Oliveira M, McCauley T, Tauler P, Muhamad A. Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports. 2012;22(3):410–7.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Neville V, Gleeson M, Folland J. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc. 2008;40(7):1228–36.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Reid V, Gleeson M, Williams N, Clancy R. Clinical investigation of athletes with persistent fatigue and/or recurrent infections. Br J Sports Med. 2004;38:42–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  49. Morgan W, Brown D, Raglin J, O’Connor P, Ellickson K. Psychological monitoring of overtraining and staleness. Br J Sports Med. 1987;21:107–14.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  50. Morgan W, O’Connor P, Sparling P, Pate R. Psychological characterization of the elite female distance runner. Int J Sports Med. 1987;8(Suppl 2):124–31.

    PubMed  CrossRef  Google Scholar 

  51. Raglin J, Morgan W, Luchsinger A. Mood state and selfmotivation in successful and unsuccessful women rowers. Med Sci Sports Exerc. 1990;22:849–53.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Raglin J, Morgan W, O’Connor P. Changes in mood state during training in female and male college swimmers. Int J Sports Med. 1991;12:585–9.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Raglin J, Wilson G. Overtraining and staleness in athletes. In: Hanin YL, editor. Emotions in sports. Champaign: Human Kinetics; 2000. p. 191–207.

    Google Scholar 

  54. O’Connor P. Overtraining and staleness. In: Morgan WP, editor. Physical activity & mental health. Washington, D.C.: Taylor & Francis; 1997. p. 145–60.

    Google Scholar 

  55. Rice S, Olive L, Gouttebarge V, et al. Mental health screening: severity and cut-off point sensitivity of the athlete psychological strain questionnaire in male and female elite athletes. BMJ Open Sport Exerc Med. 2020;6(1):e000712.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  56. Hynynen E, Uusitalo A, Konttinen N, Rusko H. Cardiac autonomic responses to standing up and cognitive task in overtrained athletes. Int J Sports Med. 2008;29(7):552–8.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Cadegiani, F. (2020). Classical Understanding of Overtraining Syndrome. In: Overtraining Syndrome in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-030-52628-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52628-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52627-6

  • Online ISBN: 978-3-030-52628-3

  • eBook Packages: MedicineMedicine (R0)