Skip to main content

Precision Agriculture Using Advanced Technology of IoT, Unmanned Aerial Vehicle, Augmented Reality, and Machine Learning

  • Chapter
  • First Online:
Smart Sensors for Industrial Internet of Things

Part of the book series: Internet of Things ((ITTCC))

Abstract

Agriculture is one of the primary processes for quality food production in the globe. Unfortunately, the productivity of agriculture is very low, and many factors affect the yield level of it. Precision agriculture (PA) is one of the solutions for the above problem. PA uses site-specific crop management concept based on measured data using sensors and data analytics to find the root cause of yield reduction. Precision agriculture automates farming which involves the collection of data and analysis of them for better decision-making to gain high yield and quality of the agricultural product. The agriculture system integrated with data analytics and machine learning is called as smart farming or smart agriculture The goal of smart agriculture is to develop a decision-making support system for farming management. The precision smart agriculture can be enhanced with the help of latest technologies of Internet of Technology (IoT), unmanned aerial vehicle (UAV), augmented reality (AR) system, and machine learning (ML) algorithms. This chapter focuses on the illustration and utilization of those advanced technologies for smart farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mogili, U.R., Deepak, B.B.V.L.: Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 133, 502–509 (2018). https://doi.org/10.1016/j.procs.2018.07.063

    Article  Google Scholar 

  2. https://www.biz4intellia.com/blog/5-applications-of-iot-in-agriculture/

  3. Mokaya, V.: Future of precision agriculture in india using machine learning and artificial intelligence. Int. J. Comput. Sci. Eng. 7(2), 1020–1023 (2019)

    Google Scholar 

  4. Chen, W.L., Lin, Y.B., Lin, Y.W., Chen, R., Liao, J.K., Ng, F.L., Chan, Y.Y., Liu, Y.C., Wang, C.C., Chiu, C.H., Yen, T.H.: AgriTalk: IoT for precision soil farming of turmeric cultivation. IEEE Internet Things J. 6, 5209 (2019)

    Article  Google Scholar 

  5. Elijah, O., Rahman, T.A., Orikumhi, I., Leow, C.Y., Hindia, M.N.: An overview of Internet of Things (IoT) and data analytics in agriculture: benefits and challenges. IEEE Internet Things J. 5(5), 3758–3773 (2018). https://doi.org/10.1109/jiot.2018.2844296

    Article  Google Scholar 

  6. https://data-flair.training/blogs/iot-applications-in-agriculture/

  7. Khattab, A., Abdelgawad, A., Yelmarthi, K.: Design and implementation of a cloud-based IoT scheme for precision agriculture. In: 28th International Conference on Microelectronics (ICM), pp. 201–204 (2016)

    Google Scholar 

  8. https://www.microdrones.com/en/content/drones-and-precision-agriculture-the-future-of-farming/

  9. https://uavcoach.com/agricultural-drones/

  10. http://www.droneguru.net/the-pros-and-cons-of-drones-in-agriculture/

  11. Ji-Hua, M., Bing-Fang, W.: Study on the crop condition monitoring methods with remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37(B8), 945–950 (2008)

    Google Scholar 

  12. Rascher, E.: Monitoring spatio-temporal dynamics of photosynthesis with a portable hyperspectral imaging system. Photogramm. Eng. Remote Sens. 73, 45–56 (2007)

    Article  Google Scholar 

  13. Sofonia, J., Shendryk, Y., Phinn, S., Roelfsema, C., Kendoul, F., Skocaj, D.: Monitoring sugarcane growth response to varying nitrogen application rates: a comparison of UAV SLAM LiDAR and photogrammetry. Int. J. Appl. Earth Obs. Geoinf. 82, 101878–101878 (2019). https://doi.org/10.1016/j.jag.2019.05.011

    Article  Google Scholar 

  14. Kavoosi, Z., Raoufat, M.H., Dehghani, M., Abdolabbas, J., Kazemeini, S.A., Nazemossadat, M.J.: Feasibility of satellite and drone images for monitoring soil residue cover. J. Saudi Soc. Agric. Sci. 19(1), 56–64 (2020). https://doi.org/10.1016/j.jssas.2018.06

    Article  Google Scholar 

  15. https://blog.dronedeploy.com/soil-sampling-drone-mapping-combine-to-deliver-better-prescriptions-e2aac3307e46

  16. Kharim, M.N.A., Wayayok, A., Shariff, A.R.M., Abdullah, A.F., Husin, E.M.: Droplet de- position density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Comput. Electron. Agric. 167, 105045–105045 (2019). https://doi.org/10.1016/j.compag.2019.105045

    Article  Google Scholar 

  17. Yu, F., Zhang, J.F., Zhao, Y., Zhao, J.C., Tan, C., Luan, R.P.: The research and application of virtual reality (VR) technology in agriculture science. In: International Conference on Computer and Computing Technologies in Agriculture, pp. 546–550. Springer, New York (2009)

    Google Scholar 

  18. Wu, H.K., Lee, S.W.Y., Chang, H.Y., Liang, J.C.: Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 62, 41–49 (2013)

    Article  Google Scholar 

  19. Huuskonen, J., Oksanen, T.: Soil sampling with drones and augmented reality in precision agriculture. Comput. Electron. Agric. 154, 25 (2018). https://doi.org/10.1016/j.compag.2018.08.039

    Article  Google Scholar 

  20. Klerkx, L., Jakku, E., Labarthe, P.: A review of social science on digital agriculture, smart farming and agriculture 4.0: new contributions and a future research agenda. NJAS-Wagen. J. Life Sci. 90–91, 100315–100315 (2019). https://doi.org/10.1016/j.njas.2019.100315

    Article  Google Scholar 

  21. https://telanganatoday.com/augmented-reality-for-smart-farming

  22. https://tech.moverio.epson.com/en/bt-300/

  23. Phupattanasilp, P., Tong, S.R.: Augmented reality in the integrative Internet of Things (AR- IoT): application for precision farming. Sustainability. 11(9), 2658–2658 (2019). https://doi.org/10.3390/su11092658

    Article  Google Scholar 

  24. Kaizu, Y., Choi, J.: Development of a tractor navigation system using augmented reality. Eng. Agric. Environ. Food. 5(3), 96–101 (2012). https://doi.org/10.1016/s1881-8366(12)80021-8

    Article  Google Scholar 

  25. Chlingaryan, A., Sukkarieh, S., Whelan, B.: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput. Electron. Agric. 151, 61–69 (2018). https://doi.org/10.1016/j.compag.2018.05.012

    Article  Google Scholar 

  26. Liakos, K., Busato, P., Moshou, D., Pearson, S., Bochtis, D.: Machine learning in agriculture: a review. Sensors. 18(8), 2674–2674 (2018). https://doi.org/10.3390/s18082674

    Article  Google Scholar 

  27. Rauf, H.T., Saleem, B.A., Lali, M.I.U., Khan, M.A., Sharif, M., Bukhari, S.A.C.: A citrus fruits and leaves dataset for detection and classification of citrus diseases through machine learning. Data Brief. 26, 104340–104340 (2019). https://doi.org/10.1016/j.dib.2019.104340

    Article  Google Scholar 

  28. Nevavuori, P., Narra, N., Lipping, T.: Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 163, 104859–104859 (2019). https://doi.org/10.1016/j.compag.2019.104859

    Article  Google Scholar 

  29. Golhani, K., Balasundram, S.K., Vadamalai, G., Pradhan, B.: A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 5(3), 354–371 (2018). https://doi.org/10.1016/j.inpa.2018.05.002

    Article  Google Scholar 

  30. https://towardsdatascience.com/7-reasons-why-machine-learning-is-a-game-changer-for-agriculture-1753dc56e310

  31. Wang, A., Zhang, W., Wei, X.: A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 158, 226–240 (2019)

    Article  Google Scholar 

  32. Behmann, J., Mahlein, A.K., Rumpf, T., Römer, C., Plümer, L.: A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis. Agric. 16, 239 (2015)

    Article  Google Scholar 

  33. Pantazi, X.E., Tamouridou, A.A., Alexandridis, T.K., Lagopodi, A.L., Kashefi, J., Moshou, D.: Evaluation of hierarchical self-organising maps for weed mapping using UAS multi- spectral imagery. Comput. Electron. Agric. 139, 224–230 (2017). https://doi.org/10.1016/j.compag.2017.05.026

    Article  Google Scholar 

  34. Pantazi, X.E., Moshou, D., Bravo, C.: Active learning system for weed species recognition based on hyperspectral sensing. Biosyst. Eng. 146, 193–202 (2016). https://doi.org/10.1016/j.biosystemseng.2016.01.014

    Article  Google Scholar 

  35. Qiao, Y., Truman, M., Sukkarieh, S.: Cattle segmentation and contour extraction based on Mask R-CNN for precision livestock farming. Comput. Electron. Agric. 165, 104958–104958 (2019). https://doi.org/10.1016/j.compag.2019.104958

    Article  Google Scholar 

  36. Suchithra, M.S., Pai, M.L.: Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters. Inf. Process. Agric. 7, 72–82 (2020)

    Google Scholar 

  37. Goap, A., Sharma, D., Shukla, A.K., Krishna, C.R.: An IoT based smart irrigation management system using machine learning and open source technologies. Comput. Electron. Agric. 155, 41–49 (2018). https://doi.org/10.1016/j.compag.2018.09.040

    Article  Google Scholar 

  38. Barbedo, J.G.A.: Detection of nutrition deficiencies in plants using proximal images and machine learning: a review. Comput. Electron. Agric. 162, 482–492 (2019). https://doi.org/10.1016/j.compag.2019.04.035

    Article  Google Scholar 

  39. Yu, Y., Zhang, K., Yang, L., Zhang, D.: Fruit detection for strawberry harvesting robot in non- structural environment based on Mask-RCNN. Comput. Electron. Agric. 163, 104846–104846 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayakumar Ponnusamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ponnusamy, V., Natarajan, S. (2021). Precision Agriculture Using Advanced Technology of IoT, Unmanned Aerial Vehicle, Augmented Reality, and Machine Learning. In: Gupta, D., Hugo C. de Albuquerque, V., Khanna, A., Mehta, P.L. (eds) Smart Sensors for Industrial Internet of Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-52624-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52624-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52623-8

  • Online ISBN: 978-3-030-52624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics