Skip to main content

Antioxidant Mechanisms Involved in the Control of Cowpea Root Growth Under Salinity

  • Chapter
  • First Online:
Saline and Alkaline Soils in Latin America

Abstract

Salinity affects plant productivity in all agricultural crops. In the Brazilian semiarid region, considered one of the most salinized areas in Brazil, the cultivation of cowpea beans (Vigna unguiculata) is of paramount importance for the region's economy and food security. However, the development of the plant roots is affected by the inherent salinity of the soils. In addition to its direct effects, salt stress can cause osmotic stress and oxidative stress. The latter occurs when there is an imbalance between the production and removal of reactive oxygen species (ROS), which in general is a sign of stress in the plant, as in excess ROS can cause oxidative damage in cell membranes. Saline stress in the Brazilian semiarid region can cause a reduction in the size of cowpea roots but without apparent peroxidation of the membranes, suggesting that stress caused by salinity does not induce oxidative damage in root membrane lipids. Thus, this work presents evidence that the balance between the production and removal of ROS is crucial for responses related to the vegetative growth of cowpea roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  Google Scholar 

  • Barbosa KB, Costa NM, Alfenas RD, De Paula SO, Minim VP, Bressan J (2010) Oxidative stress: concept, implications and modulating factors. Rev Nutr 23:629–643

    Article  CAS  Google Scholar 

  • Barbosa MR, Silva MMA, Ulisses LWC, Rangel Camara T (2014) Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural 44:453–460

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Google Scholar 

  • Bolwell GP, Davies DR, Gerrish C, Auh C-K, Murphy TM (1998) Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. Plant Physiol 116:1379–1385

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Oliveira JT, Martins-Miranda AS, Viégas RA, Silveira JA (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytol 163:563–571

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Lima JP, Ferreira-Silva SL, Viégas RA, Silveira JA (2007) Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J Plant Physiol 164:591–600

    Article  CAS  Google Scholar 

  • Coelho DS, Simões WL, Mendes A, Dantas BF, Rodrigues JA, Souza MA (2014) Germinação e crescimento inicial de variedades de sorgo forrageiro submetidas ao estresse salino. Rev Bras Eng Agr Amb 18:25–30

    Article  Google Scholar 

  • CONAB (2018) Acompanhamento da safra brasileira de grãos. CONAB, Brasília

    Google Scholar 

  • Carol RJ, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834

    Google Scholar 

  • D’Arcy-Lameta A, Ferrari-Iliou R, Contour-Ansel D, Pham-Thi AT, Zuily-Fodil Y (2006) Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Ann Bot 97:133–140

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranová EV, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. CLMS 57:779–795

    CAS  Google Scholar 

  • De Cnodder T, Vissenberg K, Van Der Straeten D, Verbelen JP (2005) Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic reactions. New Phytol 168:541–550

    Article  Google Scholar 

  • Del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes: production, scavenging and role in cell signaling. Plant Physiol 141:330–335

    Article  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  Google Scholar 

  • Freitas JBS (2006) Respostas fisiológicas ao estresse salino de duas cultivares de feijão caupi. Universidade Federal do Ceará, Thesis

    Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433:83–87

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Pardo JM (2000) The dawn of plant salt to tolerance genetics. Trends Plant Sci 5:317–319

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–155

    Article  CAS  Google Scholar 

  • Lucena CC, Siqueira DL, Martinez HE, Cecon PR (2012) Efeito do estresse salino na absorção de nutrientes em mangueira. Rev Bras Frutic 34:297–308

    Article  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Mahalingam R, Fedoroff N (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol Plant 119:56–68

    Article  CAS  Google Scholar 

  • Maia JM (2008) Restrição de crescimento induzida por estresse salino como uma estratégia de defesa oxidativa em raízes de feijão-caupi. Universidade Federal do Ceará, Thesis

    Google Scholar 

  • Maia JM, Ferreira-Silva SL, Voigt EL, Macêdo CE, Ponte LF, Silveira JA (2012) Atividade de enzimas antioxidantes e inibição do crescimento radicular de feijão caupi sob diferentes níveis de salinidade. Acta Bot Bras 26:342–349

    Article  Google Scholar 

  • Minibaeva FV, Gordon LK (2003) Superoxide production and the activity of extracellular peroxidase in plant tissues under stress conditions. Russ J Plant Physiol 50:411–416

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    Article  CAS  Google Scholar 

  • Neves GY, Marchiosi R, Ferrarese ML, Siqueira-Soares RC, Ferrarese-Filho O (2010) Root growth inhibition and lignification induced by salt stress in soybean. J Agr Crop Sci 196:467–473

    Article  CAS  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Sem Cell Dev Biol 80:3–12

    Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1996) Intra- and extra-cellular localization of “cytosolic” Cu/Zn-superoxide dismutase in spinach leaf and hypocotyl. Plant Cell Physiol 37:790–799

    Article  CAS  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540

    Article  CAS  Google Scholar 

  • Qin WM, Lan WZ, Yang X (2004) Involvement of NADPH oxidase in hydrogen peroxide accumulation by Aspergillus niger elicitor-induced Taxus chinensis cell cultures. J Plant Physiol 161:355–361

    Article  CAS  Google Scholar 

  • Sá IB, Cunha TJ, Teixeira AD, Angelotti F, Drumond MA (2010) Processos de desertificação no Semiárido brasileiro. In: Sá IB, Silva PCG (eds) Semiárido brasileiro: pesquisa, desenvolvimento e inovação, 1st edn. Embrapa Semiárido, Petrolina, pp 126–158

    Google Scholar 

  • Sgherri C, Quartacci MF, Navari-Izzo F (2007) Early production of activated oxygen species in root apoplast of wheat following copper excess. J Plant Physiol 164(9):1152–1160

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319

    Article  CAS  Google Scholar 

  • Silveira JAG, Silva SLF, Silva EN, Viégas RA (2010) Mecanismos biomoleculares envolvidos com a resistência ao estresse salino em plantas. In: Gheyi HR, Dias NS, Lacerda CF et al (eds) (2016) Manejo da salinidade na agricultura: Estudos básicos e aplicados, 2nd edn. INCTSal, Fortaleza, pp 181–197

    Google Scholar 

  • Souza NGM, Silva JA, Maia JM Silva JB, Júnior ED, Meneses CH (2016) Tecnologias sociais voltadas para o desenvolvimento do Semiárido Brasileiro. Biofarm 12(3):1–12

    Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  Google Scholar 

  • Willadino L, Camara TR (2010) Tolerância das plantas à salinidade: aspectos fisiológicos e bioquímicos. Encicl Biosfera 6:1–23

    Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josemir Moura Maia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maia, J.M., Macedo, C.E.C., da Silva Santos, I., Melo, Y.L., Silveira, J.A.G. (2021). Antioxidant Mechanisms Involved in the Control of Cowpea Root Growth Under Salinity. In: Taleisnik, E., Lavado, R.S. (eds) Saline and Alkaline Soils in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-52592-7_21

Download citation

Publish with us

Policies and ethics