Skip to main content

The Snow-Avalanche Impact Landforms of Vestlandet, Southern Norway

  • Chapter
  • First Online:
Landscapes and Landforms of Norway

Part of the book series: World Geomorphological Landscapes ((WGLC))

Abstract

Abundant valley-floor craters, lacustrine craters, stream-bank ramparts and related snow-avalanche impact landforms characterise the landscape of Vestlandet, where topography and snow climate appear to be optimal for their formation. In this chapter, the characteristics of these enigmatic landforms are described and current knowledge and understanding of their formative processes, age and development are reviewed. Near-circular craters, up to 185 m in diameter with rims defined by prominent erosional scars have much in common with meteorite impact craters of similar size, except that they have formed incrementally as a result of frequent avalanches during the Holocene, rather than during single-impact events. Erosional and depositional features can be explained by proximal and distal jets produced by the impact of large volumes of snow at the valley-floor break of slope carrying sedimentary material upwards and outwards from the craters. Air launch of avalanches produces a steeper impact angle, enhancing the energy available for erosion of craters and the uplift of sedimentary material onto depositional mounds and ramparts. Most craters and ramparts in Vestlandet involve snow-avalanche impact on water surfaces, which generates impulse waves that may enhance or modify these landforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allix A (1924) Avalanches. Geogr Rev 14:519–560

    Article  Google Scholar 

  • Armstrong BR, Williams K (1992) The avalanche book. Fulcrum Publishing, Golden CO

    Google Scholar 

  • Baggi S, Schweizer J (2009) Characteristics of wet snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Nat Hazards 50:97–108

    Article  Google Scholar 

  • Ballantyne CK (1989) Avalanche impact landforms on Ben Nevis, Scotland. Scott Geogr Mag 105:38–42

    Google Scholar 

  • Bickerton RW, Matthews JA (1992) On the accuracy of lichenometric dates: an assessment based on the ‘Little Ice Age’ moraine sequence of Nigardsbreen, southern Norway. The Holocene 2:227–237

    Article  Google Scholar 

  • Blikra LH, Hole PA, Rye N (1989) Skred i Norge. Hurtige massebevegelser og avsetningstyper i alpine områder, Indre Nordfjord. Nor Geol Unders Skr 92:1–17

    Google Scholar 

  • Brown VH, Evans DJA, Evans IS (2011) The glacial geomorphology and surficial geology of the south-west English Lake District. J Maps 2011:221–243

    Article  Google Scholar 

  • Castebrunet H, Eckert N, Giraud G (2012) Snow and weather climate control on snow avalanche occurrence fluctuations over 50 yr in the French Alps. Clim Past 8:855–875

    Article  Google Scholar 

  • Collins GS, Melosh HJ, Osinski GR (2012) The impact-cratering process. Elements 8:25–30

    Article  Google Scholar 

  • Corner GD (1975) Rundvatnet—avalanche plunge-pool or meteorite impact crater? Nor Geogr Tidsskr 29:75–76

    Google Scholar 

  • Corner GD (1980) Avalanche impact landforms in Troms, North Norway. Geogr Ann Ser A (Phys Geogr) 62:1–4

    Article  Google Scholar 

  • Davis GH (1962) Erosional features of snow avalanches, Middle Fork Kings River, California. US Geol Surv Prof Pap 450D:122–125

    Google Scholar 

  • Davison TM, Collins GS, Elbeshausen D, Wünnemann K, Kearsley AT (2011) Numerical modelling of oblique hypervelocity impacts in strong ductile targets. Meteorit Planet Sci 46:1510–1524

    Article  Google Scholar 

  • Decaulne A, Eggertsson Ó, Laute K, Beylich AA (2014) A 100-year extreme snow-avalanche record based on tree-ring research in upper Bødalen, Inner Nordfjord, western Norway. Geomorphology 218:3–15

    Article  Google Scholar 

  • Eckerstorfer M, Christiansen HH (2011) Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006–2009. Geomorphology 134:186–196

    Article  Google Scholar 

  • Elston DP, Scott GR (1971) Pueblito de Allende penetration craters and experimental craters formed by free fall. J Geophys Res 76:5756–5764

    Article  Google Scholar 

  • Erikstad L, Sollid JL (1986) Neoglaciation in South Norway using lichenometric methods. Nor Geogr Tidsskr 40:85–105

    Article  Google Scholar 

  • Evans DJA, Brown VH, Roberts DH, Innes JB, Bickerdike HL, Vieli A, Wilson P (2015) Wasdale Head. In: McDougall DA, Evans DJA (eds) The Quaternary of the lake district: field guide. Quaternary Research Association, London, pp 213–238

    Google Scholar 

  • Fitzharris BB, Owens IF (1984) Avalanche tarns. J Glaciol 30:308–312

    Article  Google Scholar 

  • Fouinat L, Sabatier P, David F, Montet X, Schoeneich P, Chaumillon E, Poulenard J, Arnaud F (2018) Wet avalanches: long-term evolution in the Western Alps under climate and human forcing. Clim Past Discuss 14:1299–1313

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2003) Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp Fluids 35:520–532

    Article  Google Scholar 

  • Gardner JS (1970) Geomorphic significance of avalanches in the Lake Louise area, Alberta, Canada. Arct Alp Res 2:135–144

    Google Scholar 

  • Gleason JA (1995) Terrain parameters of avalanche starting zones and their effect on avalanche frequency. In: Proceedings of the international snow science workshop, Snowbird, Utah, USA, 30 October–3 November 1994, pp 393–404

    Google Scholar 

  • Grove JM (1972) The incidence of landslides, avalanches, and floods and floods in western Norway during the Little Ice Age. Arct Alp Res 4:131–138

    Article  Google Scholar 

  • Grove JM (1988) The Little Ice Age. Methuen, London

    Book  Google Scholar 

  • Haeberli W, Whiteman C (eds) (2015) Snow and ice-related hazards, risks, and disasters. Elsevier, Amsterdam

    Google Scholar 

  • Heller V, Hager WH, Minor H-E (2009) Landslide generated impulse waves in reservoirs: basics and computation. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Zürich

    Google Scholar 

  • Hewitt K (1989) The altitudinal organisation of Karakoram geomorphic processes and depositional environments. Zeitschrift für Geomorphologie, NF, Supplementband 76:9–32

    Google Scholar 

  • Hodge PW (1994) Meteorite craters and impact structures of the earth. Cambridge University Press, Cambridge

    Google Scholar 

  • Hole J (1981) Groper danna av snøskred i Sunnylven og tilgrensande områder på Sunnmøre. Førbels resultat. Norsk Geografisk Tidsskrift 35:167–172

    Article  Google Scholar 

  • Innes JL (1985) Lichenometric dating of debris-flow deposits on alpine colluvial fans in southwest Norway. Earth Surf Proc Land 10:519–524

    Article  Google Scholar 

  • Johnson AL, Smith DJ (2010) Geomorphology of snow avalanche impact landforms in the southern Canadian Cordillera. Can Geogr 54:87–103

    Article  Google Scholar 

  • Jomelli V, Bertran P (2001) Wet snow avalanche deposits in the French Alps: structure and sedimentology. Geogr Ann Ser A (Phys Geogr) 83:15–28

    Article  Google Scholar 

  • Jomelli V, Francou B (2000) Comparing the characteristics of rockfall talus and snow-avalanche landforms in an alpine environment using a new methodological approach: Massif des Ecrins, French Alps. Geomorphology 35:181–192

    Article  Google Scholar 

  • Krinov EL (1960) Principles of meteoritics. Pergamon Press, London

    Google Scholar 

  • Krinov EL (1963) The Tunguska and Sikhote-Alin meteorites. In: Middlehurst B, Kuiper G (eds) The solar system. Moon, meteorites and craters, vol 4, pp 208–234. University of Chicago Press, Chicago

    Google Scholar 

  • Laute K, Beylich AA (2014a) Morphometric and meteorological controls on recent snow avalanche distribution and activity on hillslopes in steep mountain valleys in western Norway. Geomorphology 218:16–34

    Article  Google Scholar 

  • Laute K, Beylich AA (2014b) Environmental controls and geomorphic importance of a high-magnitude/low frequency snow avalanche event in Bødalen, Nordfjord, western Norway. Geogr Ann Ser A (Phys Geogr) 96:465–484

    Google Scholar 

  • Laute K, Beylich AA (2014c) Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology 216:93–113

    Article  Google Scholar 

  • Lazar B, Williams M (2008) Climate change in western ski areas. Potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100. Cold Reg Sci Technol 51:219–228

    Article  Google Scholar 

  • Liestøl O (1974) Avalanche plunge-pool effect. Norsk Polarinstitutt Arbok 1972:179–181

    Google Scholar 

  • Luckman BH (1977) The geomorphic activity of snow avalanches. Geogr Ann Ser A (Phys Geogr) 59:31–48

    Article  Google Scholar 

  • Luckman BH (2004) Avalanche, snow. In: Goudie AS (ed) Encyclopedia of geommorphology. Routledge, London, pp 41–44

    Google Scholar 

  • Luckman BH, Matthews JA, Smith DJ, McCarroll D, McCarthy DP (1994) Snow-avalanche impact landforms: a brief discussion of terminology. Arct Alp Res 26:128–129

    Article  Google Scholar 

  • Matthews JA, Briffa KR (2005) The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr Ann Ser A (Phys Geogr) 87:17–36

    Article  Google Scholar 

  • Matthews JA, McCarroll D (1994) Snow-avalanche impact landforms in Breheimen, southern Norway: origin, age and paleoclimatic implications. Arct Alp Res 26:103–115

    Article  Google Scholar 

  • Matthews JA, Dahl S-O, Dresser PQ, Berrisford MS, Lie Ø, Nesje A, Owen G (2009) Radiocarbon chronology of Holocene colluvial (debris-flow) events at Sletthamn, Jotunheimen, southern Norway: a window on the changing frequency of extreme climatic events and their landscape impact. The Holocene 19:1107–1129

    Article  Google Scholar 

  • Matthews JA, Shakesby RA, Owen G, Vater AE (2011) Pronival rampart formation in relation to snow-avalanche activity and Schmidt-hammer exposure-age dating (SHD): three case studies from southern Norway. Geomorphology 130:280–288

    Article  Google Scholar 

  • Matthews JA, McEwen LJ, Owen G (2015) Schmidt-hammer exposure-age dating (SHD) of snow-avalanche impact ramparts in southern Norway: approaches, results and implications for landform age, dynamics and development. Earth Surf Proc Land 40:1705–1718

    Article  Google Scholar 

  • Matthews JA, Owen G, McEwen LJ, Shakesby RA, Hill JL, Vater AE, Ratcliffe AC (2017) Snow-avalanche impact craters in southern Norway: their morphology and dynamics compared with small terrestrial meteorite craters. Geomorphology 296:11–30

    Article  Google Scholar 

  • McCarroll D (1993) Modelling late-Holocene snow-avalanche activity: incorporating a new approach to lichenometry. Earth Surf Proc Land 18:527–539

    Article  Google Scholar 

  • McCarroll D (1994) A new approach to lichenometry: dating single-age and diachronous surfaces. The Holocene 4:383–396

    Article  Google Scholar 

  • McClung DM (2001) Characteristics of terrain, snow supply and forest cover for avalanche initiation by logging. Ann Glaciol 32:223–229

    Article  Google Scholar 

  • McClung DM, Schaerer P (2006) The avalanche handbook. The Mountaineers Books, Seattle, WA

    Google Scholar 

  • McClung DM, Mears AI, Schaerer P (1989) Extreme avalanche run-out: data from four mountain ranges. J Glaciol 13:180–184

    Article  Google Scholar 

  • Melosh HJ (1996) Impact cratering: a geological process. Oxford University Press, Oxford

    Google Scholar 

  • Osinski GR, Pierazzo E (2013) Impact cratering: processes and products. In: Osinski GR, Pierazzo E (eds) Impact cratering: processes and products. Wiley-Blackwell, Chichester, pp 1–20

    Google Scholar 

  • Osinski GR, Tornabene LL, Grieve RAF (2011) Impact ejecta emplacement on terrestrial planets. Earth Planet Sci Lett 310:167–181

    Article  Google Scholar 

  • Osinski GR, Grieve RAF, Tornabene LL (2013) Excavation and impact ejecta emplacement. In: Osinski GR, Pierazzo E (eds) Impact cratering: processes and products. Wiley-Blackwell, Chichester, pp 43–59

    Google Scholar 

  • Owen G, Matthews JA, Shakesby RA, He X (2006) Snow-avalanche impact landforms, deposits and effects at Urdvatnet, southern Norway: implications for avalanche style and process. Geogr Ann Ser A (Phys Geogr) 88:295–307

    Article  Google Scholar 

  • Perla R (1977) Slab avalanche measurements. Can Geotech J 14:206–213

    Article  Google Scholar 

  • Perla RI, Martinelli M Jr (2004) Avalanche Handbook. Hawaii, University Press of the Pacific, Honolulu

    Google Scholar 

  • Pierazzo E, Melosh HJ (2000) Understanding oblique impacts from experiments, observations and modelling. Annu Rev Earth Planet Sci 28:141–167

    Article  Google Scholar 

  • Powers MC (1953) A new roundness scale for sedimentary particles. J Sediment Petrol 23:117–119

    Article  Google Scholar 

  • Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin

    Google Scholar 

  • Rapp A (1959) Avalanche boulder tongues in Lappland: a description of little-known landforms of periglacial debris accumulation. Geogr Ann 41:34–48

    Google Scholar 

  • Roddy DJ, Pepin RO, Merrill RB (eds) (1977) Impact and explosion cratering. Oxford, Pergamon. In: Proceedings of the symposium on planetary cratering mechanics, Flagstaff, Arizona, 13–17 Sept 1976

    Google Scholar 

  • Sanders D (2013) Features related to snow avalanches and snow glides, Nordkette range (Northern Calcareous Alps). Geo Alp (Jahreszeitschrift zur Alpengeologie) 10:71–92

    Google Scholar 

  • Schweizer J, Jamieson JB (2001) Snow cover properties for skier triggering of avalanches. Cold Reg Sci Technol 33:207–221

    Article  Google Scholar 

  • Schweizer J, Jamieson JB, Schneebeli M (2003) Snow avalanche formation. Rev Geophys 41:4/1016/2003

    Google Scholar 

  • Smith DJ, McCarthy DP, Luckman BH (1994) Snow-avalanche impact pools in the Canadian Rocky Mountains. Arct Alp Res 16:116–127

    Article  Google Scholar 

  • Teich M (2013) Snow avalanches in forested terrain. Dr. Sc. degree. ETH, Zurich

    Google Scholar 

  • Vasskog K, Nesje A, Støren EN, Waldmann N, Chapron E, Aritzegu D (2011) A Holocene record of snow avalanche and flood activity reconstructed from a lacustrine sedimentary sequence at Oldenvatnet, western Norway. The Holocene 21:597–614

    Article  Google Scholar 

  • Wright SP, Vesconi MA, Spagnuolo MG, Cerutti C, Jacob RW, Cassidy WA (2007) Explosion craters and penetration funnels in the Campo del Cielo, Argentina crater field. In: 38th lunar and planetary science conference, abstracts #2017

    Google Scholar 

  • Zitti G, Ancey C, Postacchini M, Brocchini M (2016) Impulse waves generated by snow avalanches: momentum and energy transfer to a water body. J Geophys Res Earth Surf 121:2399–2423

    Article  Google Scholar 

Download references

Acknowledgements

We have investigated the snow-avalanche impact landforms of Vestlandet as part of the research programme of the Jotunheimen Research Expeditions 1991, 1999, 2000, 2010, 2011 and 2014. This chapter constitutes Jotunheimen Research Expeditions, Contribution No. 209 (see http://jotunheimenresearch.wixsite.com/home). We are grateful to Anna Ratcliffe for preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Matthews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matthews, J.A., Owen, G. (2021). The Snow-Avalanche Impact Landforms of Vestlandet, Southern Norway. In: Beylich, A.A. (eds) Landscapes and Landforms of Norway. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-52563-7_6

Download citation

Publish with us

Policies and ethics