Skip to main content

Paraglacial Rock-Slope Failure Following Deglaciation in Western Norway

  • Chapter
  • First Online:
Landscapes and Landforms of Norway

Part of the book series: World Geomorphological Landscapes ((WGLC))

Abstract

The paraglacial framework describes the geomorphological response to glaciation and deglaciation, whereby non-renewable, metastable, glacially conditioned sediment sources are progressively released by a range of nonglacial processes. These include slope failures that directly modify the bedrock topography of mountain landscapes. This chapter synthesises recent research on the paraglacial evolution of western Norway’s mountain rock-slopes, and evaluates the importance of glaciation, deglaciation and associated climatic and non-climatic processes. Following an introduction to the concept of paraglacial landscape change, current understanding of rock-slope responses to deglaciation is outlined, focusing on the spatial distribution, timing, duration and causes of rock-slope failure activity. Preliminary analysis of an inventory of published ages for 49 prehistoric, moderate-large (>103 m3) rock-slope failures (RSFs) indicates that the great majority occurred in the Late Weichselian/Early Holocene transition (~13–9 ka), within 2 ka of deglaciation. Subsequent RSFs were much smaller, though event frequency increased again at 8–7 ka and 5–4 ka BP. The majority of dated RSFs were not directly triggered by deglaciation (debuttressing) but were preconditioned for more than 1000 years after ice withdrawal, until slopes collapsed. It is proposed that the primary causes of failure within 2 ka of ice retreat were stress redistribution, subcritical fracture propagation, with some events possibly triggered by seismic activity. While earthquakes may have triggered renewed failure of rock-slopes in the Late Holocene, it seems likely that permafrost degradation and water supply were locally important. Priority avenues for further research are briefly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aa AR, Sjåstad J, Sønstegaard E, Blikra LH (2007) Chronology of Holocene rock-avalanche deposits based on Schmidt-hammer relative dating and dust stratigraphy in nearby bog deposits, Vora, inner Nordfjord, Norway. The Holocene 17:955–964

    Article  Google Scholar 

  • Aarseth I, Austbø P, Risnes H (1997) Seismic stratigraphy of Younger Dryas ice-marginal deposits in western Norwegian fjords. Norw J Geol 77:65–86

    Google Scholar 

  • Abele G (1997) Influence of glacier and climatic variation on rockslide activity in the Alps. Paläoklimaforschung 19:1–6

    Google Scholar 

  • Agliardi F, Crosta GB, Zanchi A (2001) Structural constrains on deep-seated slope deformations kinematics. Eng Geol 59:83–102

    Article  Google Scholar 

  • Anda E, Blikra LH, Braathen A (2002) The berill fault—first evidence of neotectonic faulting in southern Norway. Norw J Geol 82:175–182

    Google Scholar 

  • André M-F (2009) From climatic to global change geomorphology: contemporary shifts in periglacial geomorphology. In: Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments. Geological Society, London, Special Publications 320, pp 5–28

    Google Scholar 

  • Andreassen LM, Winsvold SH (eds) (2012) Inventory of Norwegian Glaciers. Norwegian Water Resources and Energy Directorate (NVE), Oslo, Rapport 38–2012

    Google Scholar 

  • Augustinus PC (1995a) Rock mass strength and the stability of some glacial valley slopes. Zeitschrift für Geomorphol 39:55–68

    Article  Google Scholar 

  • Augustinus PC (1995b) Glacial valley cross-profile development: the influence of in situ rock stress and rock mass strength, with examples from the Southern Alps, New Zealand. Geomorphology 14:87–97

    Article  Google Scholar 

  • Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3:174–195

    Article  Google Scholar 

  • Ballantyne CK (2002a) A general model of paraglacial landscape response. The Holocene 12:371–376

    Article  Google Scholar 

  • Ballantyne CK (2002b) Paraglacial geomorphology. Quatern Sci Rev 21:1935–2017

    Article  Google Scholar 

  • Ballantyne CK (2003) Paraglacial landsystems. In: Evans DJA (ed) glacial landsystems. Edwin Arnold, London, pp 432–461

    Google Scholar 

  • Ballantyne CK (2008) After the ice: holocene geomorphic activity in the Scottish highlands. Scott Geograph J 124:8–52

    Article  Google Scholar 

  • Ballantyne CK, Stone JO (2013) Timing and periodicity of paraglacial rock-slope failures in the Scottish Highlands. Geomorphology 186:150–161

    Article  Google Scholar 

  • Ballantyne CK, Sandeman GF, Stone JO, Wilson P (2014a) Rock-slope failure following Late Pleistocene deglaciation on tectonically stable mountainous terrain. Quatern Sci Rev 86:144–157

    Article  Google Scholar 

  • Ballantyne CK, Wilson P, Gheorghiu D, Rodés À (2014b) Enhanced rock-slope failure following ice-sheet deglaciation: timing and causes. Earth Surf Proc Land 39:900–913

    Article  Google Scholar 

  • Bellwald B, Hjelstuen BO, Sejrup HP, Haflidason H (2016) Postglacial mass movements and depositional environments in a high-latitude fjord system—Hardangerfjorden, western Norway. Mar Geol 379:157–175

    Article  Google Scholar 

  • Bellwald B, Hjelstuen BO, Sejrup HP, Stokowy T, Kuvås J (2019) Holocene mass movements in west and mid-Norwegian fjords and lakes. Mar Geol 407:192–212

    Article  Google Scholar 

  • Benestad RE (2005) Climate change scenarios for Northern Europe from multi-model IPCC AR4 climate simulations. Geophys Res Lett 32(L17704):1–3

    Google Scholar 

  • Blair RW (1994) Mountain and valley wall collapse due to rapid deglaciation in Mount Cook National Park, New Zealand. Mt Res Dev 14:347–358

    Article  Google Scholar 

  • Blikra LH, Nemec W (1993) Postglacial avalanche activity in western Norway: depositional facies sequences, chronostratigraphy and palaeoclimatic implications. Paläoklimaforschung 11:143–162

    Google Scholar 

  • Blikra LH, Braathen A, Anda E, Stalsberg K, Longva O (2002) Rock avalanches, gravitational bedrock fractures and neotectonic faults onshore northern west Norway: examples, regional distribution and triggering mechanisms. NGU Rapport 2002.016. Geological Survey of Norway, Trondheim, Norway

    Google Scholar 

  • Blikra LH, Longva O, Braathen A, Anda E, Dehls JF, Stalsberg K (2006) Rock slope failures in Norwegian fjord areas: examples, spatial distribution and temporal pattern. In: Evans SG, Scarawcia Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure: proceedings of the NATO advanced research workshop on massive rock slope failure: new models for hazard assessment, Celano, Italy, 16–21 June 2002 (NATO science series: IV Earth and environmental sciences; 49) Springer, Dordrecht, pp 475–496

    Google Scholar 

  • Blikra LH, Christiansen HH (2014) A field-based model of permafrost-controlled rockslide deformation in northern Norway. Geomorphology 208:34–49

    Article  Google Scholar 

  • Blikra LH, Majala G, Anda E, Berg H, Eikenæs O, Helgås G, Oppikofer T, Hermanns R, Böhme M (2016) Fare- og risikoklassifisering av ustabile fjellparti—Faresoner, arealhåndtering og tiltak. Rapport no. 77–2016. Norwegian Water Resources and Energy Directorate (NVE), Oslo (in Norwegian)

    Google Scholar 

  • Bøe A-G, Dahl SO, Lie Ø, Nesje A (2006) Holocene river floods in the upper Glomma catchment, southern Norway: a high-resolution multiproxy record from lacustrine sediments. The Holocene 16:445–455

    Article  Google Scholar 

  • Bøe R, Lepland A, Blikra LH, Longva O, Sønstegaard E (2002) Postglacial mass movements in western Norway with special emphasis on the 2000–2200 BP and 2800–3200 BP periods—final report. NGU Rapport 2002.020. Geological Survey of Norway, Trondheim, Norway

    Google Scholar 

  • Bøe R, Rise L, Blikra LH, Longva O, Eide A (2003) Holocene mass movements in Trondheimsfjorden, Central Norway. Norw J Geol 83:3–22

    Google Scholar 

  • Bøe R, Longva O, Lepland A, Blikra LH, Sønstegaard E, Haflidason H, Bryn P, Lien R (2004) Postglacial mass movements and their causes in fjords and lakes in western Norway. Norw J Geol 84:35–55

    Google Scholar 

  • Böhme M, Saintot A, Henderson IHC, Henriksen H, Hermanns RL (2011) Rock slope instabilities in Sogn and Fjordane County, Norway: a detailed structural and geomorphological analysis. In: Jaboyedoff M (ed) Slope tectonics. Geological Society, London, Special Publications 351, pp 97–111

    Google Scholar 

  • Böhme M, Hermanns RL, Fischer L, Oppikofer T, Bunkholt HSS, Derron M-H, Carrea D, Jaboyedoff M, Eiken T (2012) Detailed assessment of the deep-seated gravitational deformation at Stampa above Flåm, Norway. In: Eberhardt E, Froese C, Turner K, Leroueil S (eds) Landslides and engineered slopes. Protecting society through improved understanding: proceedings of the 11th international and 2nd North American symposium on Landslides, Banff, Canada, 3–8 June 2012. Balkema, Rotterdam, pp 647–652

    Google Scholar 

  • Böhme M, Hermanns RL, Oppikofer T, Fischer L, Bunkholt HSS, Eiken T, Pedrazzini A, Derron M-H, Jaboyedoff M, Blikra LH, Nilsen B (2013) Analyzing complex rock slope deformation at Stampa, western Norway, by integrating geomorphology, kinematics and numerical modelling. Eng Geol 154:116–130

    Article  Google Scholar 

  • Böhme M, Derron M-H, Jaboyedoff M (2014) Quantitative spatial analysis of rockfalls from road inventories: a combined statistical and physical susceptibility model. Nat Hazards Earth Syst Sci Discuss 2:81–121

    Google Scholar 

  • Böhme M, Oppikofer T, Longva O, Jaboyedoff M, Hermanns RL, Derron MH (2015) Analyses of past and present rock slope instabilities in a fjord valley: implications for hazard estimations. Geomorphology 248:464–474

    Article  Google Scholar 

  • Booth AM, Dehls J, Eiken T, Fischer L, Hermanns RL, Oppikofer T (2015) Integrating diverse geologic and geodetic observations to determine failure mechanisms and deformation rates across a large bedrock landslide complex: the Osmundneset landslide, Sogn og Fjordane, Norway. Landslides 12:745–756

    Article  Google Scholar 

  • Borchers B, Marrero S, Balco G, Caffee M, Goehring B, Lifton N, Nishiizumi K, Phillips F, Schaefer J, Stone J (2016) Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol 31:188–198

    Article  Google Scholar 

  • Bovis MJ (1982) Uphill-facing (antislope) scarps in the Coast Mountains, southwest British Columbia. Geol Soc Am Bull 93:804–812

    Article  Google Scholar 

  • Bovis MJ (1990) Rock-slope deformation at Affliction Creek, southern Coast Mountains, British Columbia. Can J Earth Sci 27:243–254

    Article  Google Scholar 

  • Braathen A, Blikra LH, Berg SS, Karlsen F (2004) Rock-slope failures in Norway: type, geometry, deformation mechanisms and stability. Norw J Geol 84:67–88

    Google Scholar 

  • Brierley GJ (2010) Landscape memory: the imprint of the past on contemporary landscape forms and processes. Area 42:76–85

    Article  Google Scholar 

  • Bungum H, Lindholm C, Faleide J-I (2005) Postglacial seismicity offshore mid-Norway with emphasis on spatio-temporal-magnitudal variations. Mar Pet Geol 22:137–148

    Article  Google Scholar 

  • Cave JAS, Ballantyne CK (2016) Catastrophic rock-slope failures in NW Scotland: quantitative analysis and implications. Scott Geogr J 132:185–209

    Article  Google Scholar 

  • Church M (2002) Fluvial sediment transfer in cold regions. In: Hewitt K, Byrne M-L, English M, Young G (eds) Landscapes of transition: landform assemblages and transformations in cold regions. Springer, Dordrecht, pp 93–118

    Chapter  Google Scholar 

  • Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059–3071

    Article  Google Scholar 

  • Church M, Slaymaker O (1989) Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature 337:452–454

    Article  Google Scholar 

  • Cossart E, Fort M (2008) Sediment release and storage in early deglaciated areas: towards an application of the exhaustion model from the case of Massif des Écrins (French Alps) since the Little Ice Age. Norsk Geografisk Tidsskrift—Norw J Geogr 62:115–131

    Article  Google Scholar 

  • Cossart E, Braucher R, Fort M, Bourles D, Carcaillet J (2008) The consequences of glacial debuttressing in deglaciated areas: evidence from field data and cosmogenic datings. Geomorphology 95:3–26

    Article  Google Scholar 

  • Cossart E, Mercier D, Decaulne A, Feuillet T (2013) An overview of the consequences of paraglacial landsliding on deglaciated mountain slopes: typology, timing and contribution to cascading fluxes. Quaternaire 24:13–24

    Article  Google Scholar 

  • Cossart E, Mercier D, Decaulne A, Feuillet T, Jónsson HP, Sæmundsson Þ (2014) Impacts of post-glacial rebound on landslide spatial distribution at a regional scale in Northern Iceland (Skagafjörður). Earth Surf Proc Land 39:336–350

    Article  Google Scholar 

  • Crosta GB, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605:13–33

    Article  Google Scholar 

  • Crosta GB, Hermanns RL, Dehls J, Lari S, Sepulveda S (2017) Rock avalanches clusters along the northern Chile coastal scarp. Geomorphology 289:27–43

    Article  Google Scholar 

  • Cruden DM, Hu XQ (1993) Exhaustion and steady state models for predicting landslide hazards in the Canadian rocky mountain. Geomorphology 8:279–285

    Article  Google Scholar 

  • Curry AM, Morris CJ (2004) Lateglacial and Holocene talus slope development and rockwall retreat on Mynydd Du, UK. Geomorphology 58:85–106

    Article  Google Scholar 

  • Dadson SJ, Church M (2005) Postglacial topographic evolution of glaciated valleys: a stochastic landscape evolution model. Earth Surf Proc Land 30:1387–1403

    Article  Google Scholar 

  • Dahl S-O, Nesje A, Lie Ø, Fjordheim K, Matthews JA (2002) Timing, equilibrium-line altitudes and climatic implications of two early-Holocene glacial re-advances during the Erdalen Event at Jostedalsbreen, western Norway. The Holocene 12:17–25

    Article  Google Scholar 

  • Dehls JF, Olesen O, Olsen L, Blikra LH (2000a) Neotectonic faulting in northern Norway; the Stuoragurra and Nordmannvikdalen postglacial faults. Quatern Sci Rev 19:1447–1460

    Article  Google Scholar 

  • Dehls JF, Olesen O, Bungum H, Hicks EC, Lindholm CD, Riis F (2000b) Neotectonic map: Norway and adjacent areas. Scale 1:3 million. Geological Survey of Norway, Trondheim

    Google Scholar 

  • Devoli G, Eikenæs O, Taurisano A, Hermanns RL, Fischer L, Oppikofer T, Bunkholt H (2011) Plan for skredfarekartlegging—delrapport steinsprang steinskred og fjellskred. NVE rapport 15/2011. Norges Vassdrags-og Energidirektorat, Oslo, Norway (in Norwegian 120 pp.)

    Google Scholar 

  • Dowdeswell JA, Ottesen D, Rise L (2010) Rates of sediment delivery from the Fennoscandian Ice Sheet through an ice age. Geology 38:3–6

    Article  Google Scholar 

  • Eisbacher GH, Clague JJ (1984) Destructive mass movements in high mountains: Hazard and management. Geolog Surv Can Pap 84–16

    Google Scholar 

  • Etzelmüller B, Romstad B, Fjellanger J (2007) Automatic regional classification of topography in Norway. Norw J Geol 87:167–180

    Google Scholar 

  • Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128

    Article  Google Scholar 

  • Evans SG, Clague JJ, Woodsworth GJ, Hungr O (1989) The Pandemonium Creek rock avalanche, British Columbia. Can Geotech J 26:427–446

    Article  Google Scholar 

  • Fenton CR, Hermanns RL, Blikra LH, Kubik PW, Bryant C, Niedermann S, Meixner A, Goethals MM (2011) Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock avalanches at 69° N, Norway. Quat Geochronol 6:437–452

    Article  Google Scholar 

  • Fischer L, Kääb A, Huggel C, Noetzli J (2006) Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Nat Hazards Earth Syst Sci 6:761–772

    Article  Google Scholar 

  • Fjeldskaar W (1997) Flexural rigidity of Fennoscandia inferred from the postglacial uplift. Tectonics 16:596–608

    Article  Google Scholar 

  • Fjeldskaar W, Lindholm C, Dehls JF, Fjeldskaar I (2000) Post-glacial uplift, neotectonics and seismicity in Fennoscandia. Quatern Sci Rev 19:1413–1422

    Article  Google Scholar 

  • Furseth A (2006) Skredulykker i Norge. Tun Forlag, Oslo, Norway (in Norwegian 207 pp.)

    Google Scholar 

  • Gardner JS (1980) Frequency magnitude and spatial distribution of mountain rockfalls and rockslides in the Highwood Pass area, Alberta, Canada. In: Coates DR, Vitek JD (eds) Thresholds in geomorphology. Allen and Unwin, London, pp 267–295

    Google Scholar 

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252

    Article  Google Scholar 

  • Gee DG, Sturt BA (eds) (1985) The Caledonide orogen–Scandinavia and related areas, vol 1. Wiley, Chichester

    Google Scholar 

  • Gisnås K, Etzelmüller B, Farbrot H, Schuler TV, Westermann S (2013) Cryo-GRID 1.0: permafrost distribution in Norway estimated by a spatial numerical model. Permafrost Periglac Process 24:2–19

    Article  Google Scholar 

  • Gisnås K, Westermann S, Schuler TV, Melvold K, Etzelmüller B (2016) Small-scale variation of snow in a regional permafrost model. The Cryosphere 10:1201–1215

    Article  Google Scholar 

  • Goering BM, Lohne ØL, Mangerud J, Svendsen JI, Gyllencreutz R, Schaefer J, Finkel R (2012) Late Glacial and Holocene 10Be production rates for western Norway. J Quat Sci 27:89–96

    Article  Google Scholar 

  • Gjessing J (1967) Norway’s paleic surface. Nor Geogr Tidsskr 21:69–132

    Article  Google Scholar 

  • Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017) Beyond debuttressing: mechanics of paraglacial rock slope damage during repeat glacial cycles. J Geophys Res Earth Surf 122:1004–1036

    Article  Google Scholar 

  • Grämiger LM, Moore JR, Gischig VS, Loew S (2018) Thermomechanical stresses drive damage of Alpine Valley Rock Walls during repeat glacial cycles. J Geophys Res Earth Surf 123:2620–2646

    Article  Google Scholar 

  • Grimstad E, Nesdal S (1990) The Loen rockslides—a historical review. In: Barton M, Stephansson W (eds) Rock joints: proceedings of the international symposium on rock joints, Loen, Norway, 4–6 June 1990. Balkema, Rotterdam, pp 3–8

    Google Scholar 

  • Grove JM (1972) The incidence of landslides, avalanches, and floods in western Norway during the Little Ice Age. Arct Alp Res 4:131–138

    Article  Google Scholar 

  • Hansen L, Beylich A, Burki V, Eilertsen RS, Fredin O, Larsen E, Lyså E, Nesje A, Stalsberg K, Tønnesen JF (2009) Stratigraphic architecture and infill history of a deglaciated bedrock valley based on georadar, seismic profiling and drilling. Sedimentology 56:1751–1773

    Article  Google Scholar 

  • Hanssen-Bauer I, Førland EJ, Haddeland I, Hisdal H, Lawrence D, Mayer S, Nesje A, Nilsen JEØ, Sandven S, Sandø AB, Sorteberg A, Ådlandsvik B (2017) Climate in Norway 2100—a knowledge base for climate adaptation. Rapport No. 1/2017. The Norwegian Centre for Climate Services, Oslo

    Google Scholar 

  • Harbitz CB, Glimsdal S, Løvholt F, Kveldsvik V, Pedersen GK, Jensen A (2014) Rockslide tsunamis in complex fjords: from an unstable rock slope at Åkerneset to tsunami risk in western Norway. Coast Eng 88:101–122

    Article  Google Scholar 

  • Henderson IHC, Saintot A (2011) Regional spatial variations in rockslide distribution from structural geology ranking: an example from Storfjorden, western Norway. In: Jaboyedoff M (ed) Slope Tectonics. Geological Society, London, Special Publications 351, pp 79–95

    Google Scholar 

  • Hermanns RL, Longva O (2012) Rapid rock slope failures. In: Clague JJ, Stead D (eds) Landslides: types, mechanisms, and modelling. Cambridge University Press, Cambridge, pp 59–70

    Chapter  Google Scholar 

  • Hermanns RL, Blikra LH, Naumann M, Nilsen B, Panthi KK, Stromeyer D, Longva O (2006a) Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway. Eng Geol 83:94–108

    Article  Google Scholar 

  • Hermanns RL, Niedermann S, Garcia AV, Schellenberger A (2006b) Rock avalanching in the NW Argentine Andes as a result of complex interactions of lithologic, structural and topographic boundary conditions, climate change and active tectonics. In: Evans SG, Scarawcia Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from Massive Rock Slope Failure: Proceedings of the NATO advanced research workshop on massive rock slope failure: new models for hazard assessment, Celano, Italy, 16–21 June 2002, (NATO Science Series: IV, Earth and Environmental Sciences; 49). Springer, Dordrecht, pp 497–520

    Google Scholar 

  • Hermanns RL, Blikra LH, Ivy-Ochs S, Kubik P, Naumann R (2009) Geomorphic control on the size of outburst floods: examples from Tafjord, Norway and Patagonia. In: Nakrem HA (ed) Proceedings of Vinterkonferansen, Norsk Geologisk Forening, Bergen, pp 50–51

    Google Scholar 

  • Hermanns RL, Fischer L, Oppikofer T, Bøhme M, Dehls JF, Henriksen H, Booth A, Eilertsen R, Longva O, Eiken T (2011) Mapping of unstable and potentially unstable rock slopes in Sogn og Fjordane (work report 2008–2010). NGU Rapport 2011.055. Geological Survey of Norway, Trondheim, Norway

    Google Scholar 

  • Hermanns RL, Redfield T, Bunkholt H, Fischer L, Oppikofer T, Gosse J, Eiken T (2012) Cosmogenic nuclide dating of slow moving rockslides in Norway in order to assess long-term slide velocities. In: Eberhardt E, Froese C, Turner K, Leroueil S (eds) Landslides and engineered slopes. Protecting society through improved understanding: Proceedings of the 11th international and 2nd North American symposium on landslides, Banff, Canada, 3–8 June 2012. Balkema, Rotterdam, pp 3–8

    Google Scholar 

  • Hermanns RL, Oppikofer T, Anda E, Blikra LH, Böhme M, Bunkholt H, Crosta GB, Dahle H, Devoli G, Fischer L, Jaboyedoff M, Loew S, Sætre S, Yugsi Molina FX (2013a) Hazard and risk classification for large unstable rock slopes in Norway. In: Proceedings of the international conference on Vaiont 1963–2013—thoughts and analyses after 50 years since the Catastrophic Landslide. Italian journal of engineering geology and environment—Book Series 6. Sapienza University, Rome, pp 245–254

    Google Scholar 

  • Hermanns RL, Oppikofer T, Dahle H, Eiken T, Ivy-Ochs S, Blikra LH (2013b) Understanding long-term slope deformation for stability assessment of rock slopes: the case of the Oppstadhornet rockslide, Norway. In: Proceedings of the international conference on Vaiont, 1963–2013—thoughts and analyses after 50 years since the catastrophic landslide. Italian journal of engineering geology and environment—Book Series 6. Sapienza University, Rome, pp 255–264

    Google Scholar 

  • Hermanns R, Blikra L, Anda E, Saintot A, Dahle H, Oppikofer T, Fischer L, Bunkholt H, Böhme M, Dehls J, Lauknes T, Redfield T, Osmundsen P, Eiken T (2013c) Systematic mapping of large unstable rock slopes in Norway. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 1. Landslide inventory and susceptibility and hazard zoning. Springer, Heidelberg, pp 29–34

    Chapter  Google Scholar 

  • Hermanns RL, Schleier M, Böhme M, Blikra LH, Gosse K, Ivy-Ochs S, Hilger P (2017a) Rock-avalanche activity in W and S Norway peaks after the retreat of the Scandinavian ice sheet. In: Mikoš M, Vilímek V, Yin Y, Sassa K (eds) Advancing Culture of Living with Landslides, vol 5. Landslides in Different Environments. Springer-Verlag, Heidelberg, pp 331–338

    Chapter  Google Scholar 

  • Hermanns RL, Böhme M, Oppikofer T, Gosse J, Penna IM (2017b) When does progressive rock-slope failure start and how does it develop in time? an analysis from Norway: a landscape dominated by steep alpine relief excavated by multiple glacial cycles. In: Leith K, Ziegler M, Perras M, Loew S (eds) Progressive rock failure conference, Monte Verità, 5–9 June 2017, extended abstracts. ETH Zurich, Zurich, pp 40–43

    Google Scholar 

  • Hewitt K (2002) Introduction: landform assemblages and transitions in cold regions. In: Hewitt K, Byrne M-L, English M, Young G (eds) Landscapes of transition: landform assemblages and transformations in cold regions. Springer, Dordrecht, pp 1–8

    Chapter  Google Scholar 

  • Hewitt K (2006) Disturbance regime landscapes: mountain drainage systems interrupted by large rockslides. Prog Phys Geogr 30:365–393

    Article  Google Scholar 

  • Hilger P, Hermanns RL, Gosse JC, Jacobs B, Etzelmüller B, Krautblatter M (2018) Multiple rock-slope failures from Mannen in Romsdal Valley, western Norway, revealed from Quaternary geological mapping and 10Be exposure dating. The Holocene 28:1841–1854

    Article  Google Scholar 

  • Hinchliffe S, Ballantyne CK (1999) Talus accumulation and rockwall retreat, Trotternish, Isle of Skye Scotland. Scott Geograph J 115:53–70

    Article  Google Scholar 

  • Hipp T, Etzelmüller B, Westermann S (2014) Permafrost in Alpine Rock faces from Jotunheimen and Hurrungane, Southern Norway. Permafrost Periglac Process 25:1–13

    Article  Google Scholar 

  • Holm K, Bovis M, Jakob M (2004) The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology 57:201–216

    Article  Google Scholar 

  • Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • Jaboyedoff M, Derron M, Jakubowski J, Oppikofer T, Pedrazzini A (2012) The 2006 Eiger rockslide, European Alps. In: Clague JJ, Stead D (eds) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 282–296

    Chapter  Google Scholar 

  • Jarman D (2006) Large rock slope failures in the Highlands of Scotland: characterisation, causes and spatial distribution. Eng Geol 83:161–182

    Article  Google Scholar 

  • Jarman D (2009) Paraglacial rock slope failure as an agent of glacial trough widening. In: Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments. Geological Society, London, Special Publications 320, pp 102–131

    Google Scholar 

  • Jarman D, Ballantyne CK (2002) Beinn Fhada, Kintail: a classic example of paraglacial rock-slope deformation. Scott Geograph J 118:59–68

    Article  Google Scholar 

  • Jarman D, Harrison S (2019) Rock slope failure in the British mountains. Geomorphology 340:202–233

    Article  Google Scholar 

  • Jibson RW (1996) Using Landslides for Paleoseismic Analysis. In: McCalpin JP (ed) Paleoseismology. Academic Press, San Diego, International Geophysics Series 62, pp 397–438

    Google Scholar 

  • Johnson PG (1984) Paraglacial conditions of instability and mass movement: a discussion. Zeitschrift für Geomorphologie 28:235–250

    Google Scholar 

  • Karlen W, Matthews JA (1992) Reconstructing Holocene glacier variations from glacial lake sediments: studies from Nordvestlandet and Jostedalsbreen-Jotunheimen, southern Norway. Geogr Ann 74A:327–348

    Article  Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421

    Article  Google Scholar 

  • Kirkbride MP, Deline P (2018) Spatial heterogeneity in the paraglacial response to post-Little Ice Age deglaciation of four headwater cirques in the Western Alps. Land Degrad Dev 29:3127–3140

    Article  Google Scholar 

  • Knapp S, Gilli A, Anselmetti FS, Krautblatter M, Hajdas I (2018) Multistage rock-slope failures revealed in lake sediments in a seismically active Alpine region (Lake Oeschinen, Switzerland). J Geophy Res Earth Surf 123:658–677

    Article  Google Scholar 

  • Knight J, Harrison S (2014) Mountain glacial and paraglacial environments under global climate change: lessons from the past, future directions and policy implications. Geogr Ann 96A:245–264

    Article  Google Scholar 

  • Knight J, Harrison S (2018) Transience in cascading paraglacial systems. Land Degrad Dev 29:1991–2001

    Article  Google Scholar 

  • Kos A, Amann F, Strozzi T, Delaloye R, von Ruette J, Springman S (2016) Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland. Geophys Res Lett 43(24):12466–12474

    Article  Google Scholar 

  • Krautblatter M, Huggel C, Deline P, Hasler A (2012) Research perspectives on unstable high-alpine bedrock permafrost: measurement, modelling and process understanding. Permafrost Periglac Process 23:80–88

    Article  Google Scholar 

  • Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space. Earth Surf Proc Land 38:876–887

    Article  Google Scholar 

  • Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439

    Article  Google Scholar 

  • Laute K, Beylich AA (2013) Holocene hillslope development in glacially formed valley systems in Nordfjord, western Norway. Geomorphology 188:12–30

    Article  Google Scholar 

  • Leith K, Amann F, Moore JR, Kos A, Loew S (2010a) Conceptual modelling of near-surface extensional fracture in the Matter and Saas Valleys, Switzerland. In: Williams AL, Pinches GM, Chin CY, McMorran TJ, Massey CI (eds) Geologically active: proceedings of the 11th IAEG congress, Auckland, New Zealand. CRC Press, Boca Raton, pp 363e371

    Google Scholar 

  • Leith K, Moore J, Amann F, Loew S (2010b) Slope failure induced by post-glacial extensional fracturing in the Matter and Saas Valleys, Switzerland. Geophysical Research Abstracts 12 (EGU2010–4599)

    Google Scholar 

  • Lepland A, Bøe R, Sønstegaard E, Haflidason H, Hovland C, Olsen H, Sandnes R (2002) Sedimentological descriptions and results of analytical tests of sediment cores from fjords and lakes in northwest Western Norway. NGU Rapport 2002.014. Geological Survey of Norway, Trondheim, Norway

    Google Scholar 

  • Lifton N, Sato T, Dunai TJ (2014) Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386:149–160

    Article  Google Scholar 

  • Lilleøren K, Etzelmüller B (2011) A regional inventory of rock glaciers and ice-cored moraines in Norway. Geogr Ann 93A:175–191

    Article  Google Scholar 

  • Lilleøren KS, Etzelmüller B, Schuler TV, Ginås K, Humlum O (2012) The relative age of permafrost—estimation of Holocene permafrost limits in Norway. Global Planet Change 92–93:209–223

    Article  Google Scholar 

  • Lohne ØS, Mangerund J, Birks HH (2013) Precise 14C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC05) chronology. J Quat Sci 28:490–500

    Article  Google Scholar 

  • Longva O, Blikra LH, Dehls JF (2009) Rock avalanches—distribution and frequencies in the inner part of Storfjorden, Møre og Romsdal County, Norway. NGU Rapport 2009.002. Geological Survey of Norway, Trondheim, Norway

    Google Scholar 

  • Mangerud J (2004) Ice sheet limits on Norway and the Norwegian continental shelf. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology, vol 1. Europe. Elsevier, Amsterdam, pp 271–294

    Chapter  Google Scholar 

  • Mangerud J, Gyllencreutz R, Lohne Ø, Svendsen JI (2011) Glacial history of Norway. In: Ehlers J, Gibbard PL, Hughes PD (eds) Developments in quaternary science, vol 15. Elsevier Amsterdam, pp 279–298

    Google Scholar 

  • Marion J, Filion L, Hétu B (1995) The Holocene development of a debris slope in subarctic Québec, Canada. The Holocene 5:409–419

    Article  Google Scholar 

  • Marr P, Winkler S, Löffler J (2019) Schmidt-hammer exposure-age dating (SHD) performed on periglacial and related landforms in Opplendskedalen, Geirangerfjellet, Norway: implications for mid- and late-Holocene climate variability. The Holocene 29:97–109

    Article  Google Scholar 

  • Matthews JA, Wilson P (2015) Improved Schmidt-hammer exposure ages for active and relict pronival ramparts in southern Norway, and their palaeoenvironmental implications. Geomorphology 246:7–21

    Article  Google Scholar 

  • Matthews JA, Nesje A, Linge H (2013) Relict Talus-Foot Rock Glaciers at Øyberget, Upper Ottadalen, Southern Norway: schmidt hammer exposure ages and palaeoenvironmental implications. Permafrost Periglac Process 24:336–346

    Article  Google Scholar 

  • Matthews JA, Wilson P, Mourne RW (2017) Landform transitions from pronival ramparts to moraines and rock glaciers: a case study from the Smørbotn cirque, Romsdalsalpane, southern Norway. Geogr Ann 99A:15–37

    Article  Google Scholar 

  • Matthews JA, Winkler S, Wilson P, Tomkins MD, Dortch JM, Mourne RW, Hill JL, Owen G, Vater AE (2018) Small rock-slope failures conditioned by Holocene permafrost degradation: a new approach and conceptual model based on Schmidt-hammer exposure-age dating, Jotunheimen, southern Norway. Boreas 47:1144–1169

    Article  Google Scholar 

  • McColl ST (2012) Paraglacial rock-slope stability. Geomorphology 153–154:1–16

    Article  Google Scholar 

  • McColl ST, Davies TRH (2013) Large ice-contact slope movements: glacial buttressing, deformation and erosion. Earth Surf Proc Land 38:1102–1115

    Article  Google Scholar 

  • McColl ST, Draebing D (2019) Rock slope instability in the proglacial zone: state of the art. In: Heckman T, Morche D (eds) geomorphology of proglacial systems: landform and sediment. Springer, Cham, pp 119–141

    Google Scholar 

  • McSaveney MJ (1993) Rock avalanches of 2 May and 6 September 1992, Mount Fletcher, New Zealand. Landslide News 7:2–4

    Google Scholar 

  • Mercier D, Cossart E, Decaulne A, Feuillet T, Jónsson HP, Sæmundsson Þ (2013) The Höfðahólar rock avalanche (sturzström): chronological constraint of paraglacial landsliding on an Icelandic hillslope. The Holocene 23:432–446

    Article  Google Scholar 

  • Messenzehl K, Meyer H, Otto J-C, Hoffmann T, Dikau R (2017) Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps)—a multivariate modeling approach. Geomorphology 287:29–45

    Article  Google Scholar 

  • Mörner N-A (2005) An interpretation and catalogue of palaeoseismicity in Sweden. Tectonophysics 408:265–307

    Article  Google Scholar 

  • Mörner N-A (2013) Patterns in seismology and palaeoseismology and their application in long-term hazard assessments—the Swedish case in view of nuclear waste management. Pattern Recogn Phys 1:75–89

    Article  Google Scholar 

  • Murton JB, Peterson R, Ozouf J-C (2006) Bedrock fracture by ice segregation in cold regions. Science 314:1127–1129

    Article  Google Scholar 

  • Nesje A (2002) A large rockfall avalanche in Oldedalen, inner Nordfjord, western Norway, dated by means of a sub-avalanche Salix sp. tree trunk. Norw J Geol 82:59–62

    Google Scholar 

  • Nesje A (2009) Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quatern Sci Rev 28:2119–2136

    Article  Google Scholar 

  • Nesje A, Kvamme M, Rye N, Løvlie R (1991) Holocene glacial and climate history of the Jostedalsbreen region, western Norway: evidence from lake sediments and terrestrial deposits. Quatern Sci Rev 10:87–114

    Article  Google Scholar 

  • Nesje A, Blikra LH, Anda E (1994) Dating rockfall-avalanche deposits from degree of rock-surface weathering by Schmidt-hammer tests: a study from Norangsdalen, Sunnmøre, Norway. Norw J Geol 74:108–113

    Google Scholar 

  • Nesje A, Matthews JA, Dahl SO, Berrisford M, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-preci-pitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. The Holocene 11:267–280

    Article  Google Scholar 

  • Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA (2008) Norwegian mountain glaciers in the past, present and future. Global Planet Change 60:10–27

    Article  Google Scholar 

  • NGU (2015) Bedrock—national bedrock database. Geological survey of Norway. http://geo.ngu.no/kart/berggrunn_mobil/. Accessed 31 July 2020 (in Norwegian)

  • NVE (2018) NVE Atlas. https://atlas.nve.no/. Accessed 31 July 2020 (in Norwegian)

  • Olesen O, Blikra LH, Braathen A, Dehls JF, Olsen L, Rise L, Roberts D, Riis F, Faleide JI, Anda E (2004) Neotectonic deformation in Norway and its implications: a review. Norw J Geol 84:3–34

    Google Scholar 

  • Olesen O, Bungum H, Dehls J, Lindholm C, Pascal C, Roberts D (2013) Neotectonics seismicity and contemporary stress field in Norway—mechanisms and implications. In: Olsen L, Fredin O, Olesen O (eds) Quaternary geology of Norway. Geological Survey of Norway Special Publication 13, Trondheim, pp 145–174

    Google Scholar 

  • Oliva M, Mercier D, Ruiz-Fernández J, McColl S (2019) Paraglacial processes in recently deglaciated environments. Land Degrad Dev (in press)

    Google Scholar 

  • Olsen L, Sveian H, Bergstrøm B, Ottesen D, Rise L (2013) Quaternary glaciations and their variations in Norway and on the Norwegian continental shelf. In: Olsen L, Fredin O, Olesen O (eds) Quaternary geology of Norway. Geological Survey of Norway Special Publication 13, Trondheim, pp 27–78

    Google Scholar 

  • Oppikofer T, Saintot A, Otterå S, Hermanns RL, Anda E, Dahle H, Eiken T (2013) Investigations on unstable rock slopes in Møre og Romsdal—status and plans after field surveys in 2012. NGU Rapport 2013.014. Geological Survey of Norway, Trondheim, Norway

    Google Scholar 

  • Oppikofer T, Nordahl B, Bunkholt H, Nicolaisen M, Jarna A, Iversen S, Hermanns RL, Böhme M, Yugsi Molina FX (2015) Database and online map service on unstable rock slopes in Norway—from data perpetuation to public information. Geomorphology 249:69–81

    Article  Google Scholar 

  • Oppikofer T, Hermanns RL, Sandøy G, Böhme M, Jaboyedoff M, Horton P, Roberts NJ, Fuchs H (2016) Quantification of casualties from potential rock-slope failures in Norway. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and engineered slopes. Experience, theory and practice: proceedings of the 12th international symposium on Landslides (Napoli, Italy, 12–19 June 2016). CRC Press/Balkema, Leiden, pp 1537–1544

    Google Scholar 

  • Oppikofer T, Saintot A, Hermanns RL, Böhme M, Scheiber T, Gosse J, Dreiås GM (2017) From incipient slope instability through slope deformation to catastrophic failure—different stages of failure development on the Ivasnasen and Vollan rock slopes (western Norway). Geomorphology 289:96–116

    Article  Google Scholar 

  • Ostermann M, Sanders D (2017) The Benner pass rock avalanche cluster suggests a close relation between long-term slope deformation (DSGSDs and translational rock slides) and catastrophic failure. Geomorphology 289:44–59

    Article  Google Scholar 

  • Pánek T, Klimeš J (2016) Temporal behavior of deep-seated gravitational slope deformations: a review. Earth-Sci Rev 156:14–38

    Article  Google Scholar 

  • Peulvast J-P (1985) Relief, érosion différentielle et morphogenèse dans un bourrelet montagneux de haute latitude: Lofoten-vesteralen et Sogn-Jotun (Norvège). Unpublished PhD thesis, University of Paris 1 Panthéon-Sorbonne, Paris, 1642 pp

    Google Scholar 

  • Phillips JD (2003) Sources of nonlinearity and complexity in geomorphic systems. Prog Phys Geogr 27:1–23

    Article  Google Scholar 

  • Prager C, Zangerl C, Patzelt G, Brandner R (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazards Earth Syst Sci 8:377–407

    Article  Google Scholar 

  • Radbruch-Hall DH (1978) Gravitational creep of rock masses on slopes. In: Voight B (ed) Rockslides and avalanches, vol 1. Natural phenomena. Elsevier, Amsterdam, pp 607–657

    Google Scholar 

  • Redfield TF, Hermanns RL (2016) Gravitational slope deformation, not neotectonics: revisiting the Nordmannvikdalen feature of northern Norway. Norw J Geol 96:245–273

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  • Rodríguez-Rodríguez L, González-Lemos S, Ballesteros D, Valenzuela P, Domínguez-Cuesta MJ, Llana-Fúnez S, Jiménez-Sánchez M (2018) Timing of paraglacial rock-slope failures and denudation signatures in the Cantabrian Mountains (North Iberian Peninsula). Land Degrad Dev 29:3159–3173

    Article  Google Scholar 

  • Ryder JM (1971) The stratigraphy and morphology of paraglacial alluvial fans in south-central British Columbia. Can J Earth Sci 8:279–298

    Article  Google Scholar 

  • Rye N, Nesje A, Lien R, Anda E (1987) The late Weichselian ice sheet in the Nordfjord-Sunnmøre area and deglaciation chronology for Nordfjord, western Norway. Nor Geogr Tidsskr 41:23–43

    Article  Google Scholar 

  • Saintot A, Henderson IHC, Derron M-H (2011) Inheritance of ductile and brittle structures in the development of large rock slope instabilities: examples from western Norway. In: Jaboyedoff M (ed) Slope tectonics. Geological Society, London, Special Publications 351, pp 27–78

    Google Scholar 

  • Sandøy G, Oppikofer T, Nilsen B (2017) Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway. Geomorphology 289:78–95

    Article  Google Scholar 

  • Schleier M, Hermanns RL, Rohn J, Gosse J (2015) Diagnostic characteristics and paleodynamics of supraglacial rock avalanches, Innerdalen, Western Norway. Geomorphology 245:23–39

    Article  Google Scholar 

  • Schleier M, Hermanns RL, Krieger I, Oppikofer T, Eiken T, Rønning JS, Rohn J (2016) Gravitational reactivation of a pre-existing post-Caledonian fault system: the deep-seated gravitational slope deformation at Middagstinden, western Norway. Norw J Geol 96:201–222

    Google Scholar 

  • Schleier M, Hermanns RL, Gosse JC, Oppikofer T, Rohn J, Tønnesen AF (2017) Subaqueous rock-avalanche deposits exposed by post-glacial isostatic rebound, Innfjorddalen, Western Norway. Geomorphology 289:117–133

    Article  Google Scholar 

  • Sigurdsson O, Williams RS (1991) Rockslides on the terminus of ‘Jökulsárgilsjökull’, southern Iceland. Geogr Ann 73A:129–140

    Google Scholar 

  • Slaymaker O (2009) Proglacial, periglacial or paraglacial? In: Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments. Geological Society, London, Special Publications 320, pp 71–84

    Google Scholar 

  • Slaymaker O (2011) Criteria to distinguish between periglacial, proglacial and paraglacial environments. Quaest Geogr 30:85–94

    Article  Google Scholar 

  • Sollid JL, Sørbel L (1979) Deglaciation of western Central Norway. Boreas 8:233–239

    Article  Google Scholar 

  • Steiger C, Etzelmüller B, Westermann S, Myhra KS (2016) Modelling the permafrost distribution in steep rock walls in Norway. Norw J Geol 96:329–341

    Google Scholar 

  • Stewart IS, Sauber J, Rose J (2000) Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quatern Sci Rev 19:1367–1389

    Article  Google Scholar 

  • Stone J (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105:23753–23760

    Article  Google Scholar 

  • Svendsen JI, Mangerud J (1987) Late Weichselian and Holocene sea-level history for a cross-section of western Norway. J Quat Sci 2:113–132

    Article  Google Scholar 

  • Tibaldi A, Rovida A, Corazzato C (2004) A giant deep-seated slope deformation in the Italian Alps studied by paleoseismological and morphometric techniques. Geomorphology 58:27–47

    Article  Google Scholar 

  • Tveten E, Lutro O, Thorsnes T (1998) Geologisk kart over Norge, 1:250,000. Geological Survey of Norway, Trondheim, Norway

    Google Scholar 

  • Vestøl O (2006) Determination of postglacial land uplift in Fennoscandia from levelling, tide-gauges and continuous GPS stations using least squares collocation. J Geodesy 80:248–258

    Article  Google Scholar 

  • Wilson P (2009) Rockfall talus slopes and associated talus-foot features in the glaciated uplands of Great Britain and Ireland: periglacial, paraglacial or composite landforms? In: Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments. Geological Society, London, Special Publications 320, pp 133–144

    Google Scholar 

  • Wilson P (2017) Periglacial and paraglacial processes, landforms and sediments. In: Coxon P, McCarrron S, Mitchell F (eds) Advances in Irish quaternary studies, vol 1. Atlantis Press, Paris, pp 217–254

    Chapter  Google Scholar 

  • Winkler S (2021) Terminal moraine formation processes and geomorphology of glacier forelands at selected outlet glaciers of Jostedalsbreen, South Norway. In: Beylich AA (ed) Landscapes and Landforms of Norway. Springer, Dordrecht, pp XXX–XXX

    Google Scholar 

  • Winsvold SH, Andreassen LM, Kienholz C (2014) Glacier area and length changes in Norway from repeat inventories. The Cryosphere 8:1885–1903

    Article  Google Scholar 

  • Wyrwoll K-H (1977) Causes of rock-slope failure in a cold area: Labrador-Ungava. Geol Soc Am Rev Eng Geol 3:59–67

    Google Scholar 

Download references

Acknowledgements

The author is especially grateful to Paula Hilger, John Matthews and Peter Wilson for kindly supplying photographs, and to Reginald Hermanns for giving valuable feedback on an early draft. The author, however, is solely responsible for the final outcome. Technical support from Mr. Aiden Bygrave is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair M. Curry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Curry, A.M. (2021). Paraglacial Rock-Slope Failure Following Deglaciation in Western Norway. In: Beylich, A.A. (eds) Landscapes and Landforms of Norway. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-52563-7_5

Download citation

Publish with us

Policies and ethics