Skip to main content

Recent Glacier Changes and Formation of New Proglacial Lakes at the Jostedalsbreen Ice Cap in Southwest Norway

  • Chapter
  • First Online:
Landscapes and Landforms of Norway

Part of the book series: World Geomorphological Landscapes ((WGLC))

Abstract

At present, glaciated mountain environments are among the most dynamic geomorphic systems as they are exposed to various climatic and environmental changes. Climate-induced widespread glacier retreat and thinning lead to a gradual enlargement of formerly glaciated terrain. Due to a continuing increase of summer temperatures predicted for western Norway until the end of this century, it is likely that the current trend of the accelerated mass loss of Norwegian glaciers will continue. As one consequence of this development, new lakes will emerge within the formerly glaciated and newly exposed terrain. Because glaciers and glacier-fed streams in mainland Norway have a high importance for hydropower production, tourism and climate research, it is essential to gain an improved understanding of the possible environmental impacts of proglacial lakes in order to being prepared for advantages and challenges connected to these newly emerging landscape elements. This chapter highlights the significant transformation of the Norwegian glacial landscape by illustrating recent glacier changes and the formation of new proglacial lakes at the Jostedalsbreen ice cap in southwest Norway. The created lake inventory contributes to the global set of worldwide existing glacier lake inventories and serves as a baseline study for possible future comparisons at regional and global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andreassen LM, Winsvold SH (eds) (2012) Inventory of Norwegian glaciers. Norwegian Water Resources and Energy Directorate (NVE), Oslo, Report p 38

    Google Scholar 

  • Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV, Haakensen N (2005) Glacier mass balance and length variations in Norway. Ann Glaciol 42:317–325

    Article  Google Scholar 

  • Andreassen LM, Paul F, Kääb A, Hausberg JE (2008) Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. The Cryosphere 2:131–145

    Article  Google Scholar 

  • Andreassen LM, Huss M, Melvold K, Elvehøy H, Winsvold SH (2015) Ice thickness measurements and volume estimates for glaciers in Norway. J Glaciol 61:763–775

    Article  Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017

    Article  Google Scholar 

  • Baumhauer R, Winkler S (2014) Glazialgeomorphologie—Formung der Landoberfläche durch Gletscher. Bornträger, Stuttgart

    Google Scholar 

  • Beniston M (2000) Environmental change in mountains and uplands. Taylor & Francis Ltd., London

    Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  • Benn DI, Evans DJA (2010) Glaciers and glaciation. Routledge, London

    Google Scholar 

  • Beylich AA, Laute K (2012) Spatial variations of surface water chemistry and chemical denudation in the Erdalen drainage basin, Nordfjord, western Norway. Geomorphology 167–168:77–90

    Article  Google Scholar 

  • Beylich AA, Laute K (2021) Fluvial processes and contemporary fluvial denudation in different mountain landscapes in western and central Norway. In: Beylich AA (ed) Landscapes and Landforms of Norway. Springer, Dordrecht

    Google Scholar 

  • Bickerton RW, Matthews JA (1993) Little Ice Age’ variations of outlet glaciers from the Jostedalsbreen ice-cap, southern Norway: a regional lichenometric-dating study of ice-marginal moraine sequences and their climatic significance. J Quat Sci 8:45–66

    Article  Google Scholar 

  • Bilt WGMvd, Bakke J, Vasskog K, Røthe T, Støren EWN (2016) Glacier-fed lakes as palaeoenvironmental archives. Geol Today 32:213–218

    Google Scholar 

  • Binder D, Brückl E, Roch K, Behm M, Schöner W, Hynek B (2009) Determination of total ice volume and ice-thickness distribution of two glaciers in the Hohe Tauern region, Eastern Alps, from GPR data. Ann Glaciol 50:71–79

    Article  Google Scholar 

  • Bogen J, Xu M, Kennie P (2015) The impact of pro-glacial lakes on downstream sediment delivery in Norway. Earth Surf Proc Land 40:942–952

    Article  Google Scholar 

  • Breien H, De Blasio FV, Elverhøi A, Høeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides 5:271–280

    Article  Google Scholar 

  • Buckel J, Otto JC, Prasicek G, Keuschnig M (2018) Glacial lakes in Austria—distribution and formation since the Little Ice Age. Global Planet Change 164:39–51

    Article  Google Scholar 

  • Burki V, Larsen E, Fredin O, Nesje A (2009) Glacial remobilization cycles as revealed by lateral moraine sediment, Bødalsbreen glacier foreland, western Norway. The Holocene 19:415–426

    Article  Google Scholar 

  • Burki V, Hansen L, Fredin O, Andersen TA, Beylich AA, Jaboyedoff M, Larsen E, Tønnesen JF (2010) Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas 39:551–566

    Google Scholar 

  • Carrivik JL, Heckmann T (2017) Short-term geomorphological evolution of proglacial systems. Geomorphology 287:3–28

    Article  Google Scholar 

  • Carrivick JL, Quincey DJ (2014) Progressive increase in number and volume of icemarginal lakes on the western margin of the Greenland Ice Sheet. Glob Planet Change 116:156–163

    Article  Google Scholar 

  • Carrivick JL, Tweed FS (2013) Proglacial lakes: character, behaviour and geological importance. Quat Sci Rev 78:34–52

    Article  Google Scholar 

  • Carrivick JL, Tweed FS (2016) A global assessment of the societal impacts of glacier outburst floods. Glob Planet Change 144:1–16

    Article  Google Scholar 

  • Cavalli M, Heckmann T, Marchi L (2019) Sediment connectivity in proglacial areas. In: Heckmann T, Morche D (eds) Geomorphology of proglacial systems: landform and sediment dynamics in recently deglaciated alpine landscapes. Springer, Basel, pp 271–287

    Chapter  Google Scholar 

  • Chinn TJH, Winkler S, Salinger MJ, Haakensen N (2005) Recent glacier advances in Norway and New Zealand: a comparison for their glaciological and meteorological causes. Geografiska Annaler A 87:141–157

    Article  Google Scholar 

  • Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059–3071

    Article  Google Scholar 

  • Clague JJ, Evans SG (2000) A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat Sci Rev 19:1763–1783

    Article  Google Scholar 

  • Clarke GKC, Berthier E, Schoof CG, Jarosch AH (2009) Neural networks applied to estimating subglacial topography and glacier volume. J Clim 22:2146–2160

    Article  Google Scholar 

  • Cook SJ, Swift DA (2012) Subglacial basins: their origin and importance in glacial systems and landscapes. Earth-Sci Rev 115(4):332–372

    Article  Google Scholar 

  • Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100:1054–1068

    Article  Google Scholar 

  • Engelhardt M, Schuler TV, Andreassen LM (2015) Sensitivities of glacier mass balance and runoff to climate perturbations in Norway. Ann Glaciol 56(70):79–88

    Article  Google Scholar 

  • Geilhausen M, Morche D, Otto JC, Schrott L (2013) Sediment discharge from the proglacial zone of a retreating Alpine glacier. Zeitschrift für Geomorphologie Supplementary Issues 57(3):29–53

    Article  Google Scholar 

  • Glässer E (1993) Wissenschaftliche Länderkunden. Bd.14: Norwegen. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Greatbatch RJ (2000) The north atlantic oscillation. Res Risk Assess 14:0213–0242

    Google Scholar 

  • Grove JM (1988) The little ice age. Methuen, London

    Google Scholar 

  • Grove JM (2004) Little ice ages, 2 volumes. Routledge, London

    Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112:F02S18

    Google Scholar 

  • Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27(4):258–265

    Google Scholar 

  • Haeberli W, Buetler M, Huggel C, Lehmann Friedli T, Schaub Y, Schleiss AJ (2016) New lakes in deglaciating high-mountain regions—opportunities and risks. Climatic Change 1–14

    Google Scholar 

  • Hanssen-Bauer I, Førland EJ (1998) Annual and seasonal precipitation trends in Norway 1896–1997. DNMI report 27/98

    Google Scholar 

  • Hanssen-Bauer I, Førland EJ, Haddeland I, Hisdal H, Mayer S, Nesje A, Nilsen JEØ, Sandven S, Sandø AB, Sorteberg A, Ådlandsvik B (2017) Climate in Norway 2100: a knowledge base for climate adaptation. NCCS report 1/2017

    Google Scholar 

  • Harris C, Von der Mühll D, Isaksen K, Haeberli W, Sollid JL, King L, Holmlund P, Dramis F, Guglielmin M, Palacios D (2003) Warming permafrost in European mountains. Glob Planet Change 39(3–4):215–225

    Article  Google Scholar 

  • Heckmann T, Morche D, Becht M (2019) Introduction. In: Heckmann T, Morche D (eds) Geomorphology of proglacial systems: landform and sediment dynamics in recently deglaciated alpine landscapes. Springer, Basel, pp 1–19

    Chapter  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hurrell JW, Kushni Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: climatic significance and environmental impact. Geophys Monogr Ser 134:1–35

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ivy-Ochs S, Kerschner H, Maisch M, Christl M, Kubik PW, Schlüchter C (2009) Latest Pleistocene and Holocene glacier variations in the European Alps. Quatern Sci Rev 28:2137–2149

    Article  Google Scholar 

  • Jackson M, Ragulina, G (2014) Inventory of glacier-related hazardous events in Norway. Oslo, NVE Report 83/2014

    Google Scholar 

  • Johnson PG (2002) Proglacial and paraglacial fluvial and lacustrine environments in transition. In: Hewitt K, Byrne M-L, English M, Young G (eds) Landscapes of Transition. Springer, Dordrecht, pp 43–62

    Google Scholar 

  • Kääb A, Haeberli W (2001) Evolution of a high-mountain thermokarst lake in the Swiss Alps. Arct Antarct Alp Res 33(4):385–390

    Article  Google Scholar 

  • Ketzler G, Römer W, Beylich AA (2021) The Climate of Norway. In: Beylich AA (ed) Landscapes and Landforms of Norway. Springer, Dordrecht

    Google Scholar 

  • Kjøllmoen B, Andreassen LM, Elvehøy H, Haakensen N (2000) Glasiologiske undersøkelser i Norge 1999. Oslo, NVE Rapport 2/2000

    Google Scholar 

  • Kjøllmoen B, Andreassen LM, Elvehøy H, Jackson M (2018) Glaciological investigations in Norway 2017. Oslo, NVE Report 82/2018

    Google Scholar 

  • Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space. Earth Surf Proc Land 38:876–887

    Article  Google Scholar 

  • Larsen DJ, Miller GH, Geirsdóttir Á, Thordarson T (2011) A 3000-year varved record of glacier activity and climate change from the proglacial lake Hvítárvatn, Iceland. Quat Sci Rev 30:2715–2731

    Article  Google Scholar 

  • Laute K, Beylich AA (2014a) Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology 216:93–113

    Article  Google Scholar 

  • Laute K, Beylich AA (2014b) Environmental controls and geomorphic importance of a high-magnitude/low-frequency snow avalanche event in Bødalen, Nordfjord, western Norway. Geografiska Annaler A 96A:465–484

    Google Scholar 

  • Laute K, Beylich AA (2016) Sediment delivery from headwater slope systems and relief development in steep mountain valleys in western Norway. In: Beylich AA, Dixon JC, Zwolinski Z (eds) Source-to-sink-fluxes in undisturbed cold environments. Cambridge University Press, Cambridge, pp 293–312

    Chapter  Google Scholar 

  • Laute K, Beylich AA (2018) Potential effects of climate change on future snow avalanche activity in western Norway deduced from meteorological data. Geografiska Annaler A 100(2):163–184

    Article  Google Scholar 

  • Liermann S, Beylich AA, van Welden A (2012) Contemporary suspended sediment transfer and accumulation processes in the small proglacial Sætrevatnet subcatchment, Bødalen, western Norway. Geomorphology 167–168:91–101

    Article  Google Scholar 

  • Liestøl O (1956) Glacier dammed lakes in Norway. Nor Geogr Tidsskr 15(3/4):121–149

    Google Scholar 

  • Linsbauer A, Paul, F, Hoelzle M, Frey H, Haeberli W (2009) The Swiss Alps without glaciers: a GIS-based modelling approach for reconstruction of glacier beds. In: Purves R, Gruber S, Straumann R, Hengle T (eds) Geomorphometry. Zürich, pp 243–247

    Google Scholar 

  • Linsbauer A, Paul F, Haeberli W (2012) Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach. J Geophys Res 117:F03007

    Google Scholar 

  • Linsbauer A, Frey H, Haeberli W, Machguth H, Azam MF, Allen S (2016) Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya-Karakoram region. Ann Glaciol 567(71):119–130

    Article  Google Scholar 

  • Luckman BH (2000) The little ice age in the Canadian rockies. Geomorphology 32:357–384

    Google Scholar 

  • Matthews JA, Briffa K (2005) The ‘Little Ice Age’: re-evaluation of an evolving concept. Geografiska Annaler A 87:17–36

    Article  Google Scholar 

  • Matthews JA, Shakesby RA, Schnabel C, Freeman S (2008) Cosmogenic 10Be and 26Al ages of Holocene moraines in southern Norway I: testing the method and confirmation of the date of the Erdalen event (c. 10 ka) at its type-site. The Holocene 18:1155–1164

    Article  Google Scholar 

  • Mottershead DN, Collin RL (1976) A study of glacier-dammed lakes over 75 years: Brimkjelen southern Norway. J Glaciol 17(77):491–505

    Article  Google Scholar 

  • Nesje A (1984) Kvartærgeologiske undersøkningar i Erdalen, Stryn, Sogn og Fjordane. M.S. Thesis. University of Bergen, p 201

    Google Scholar 

  • Nesje A (1995) Breene I Vest-Norge vokser med rekordfart. Naturen 119:7–10

    Google Scholar 

  • Nesje A (2005) Briksdalsbreen in western Norway: AD 1900–2004 frontal fluctuations as a combined effect of variations in winter precipitation and summer temperature. The Holocene 15:1245–1252

    Article  Google Scholar 

  • Nesje A (2009) Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quatern Sci Rev 28:2119–2136

    Article  Google Scholar 

  • Nesje A, Dahl SO (2003) The ‘Little Ice Age’—only temperature? Holocene 13:139–145

    Article  Google Scholar 

  • Nesje A, Kvamme M (1991) Holocene glacier and climate variations in western Norway: evidence for early Holocene glacier demise and multiple Neoglacial events. Geology 19:610–612

    Article  Google Scholar 

  • Nesje A, Matthews JA (2011) The Briksdalsbre event: a winter precipitation-induced decadalscale glacial advance in southern Norway in the AD 1990s and its implications. The Holocene 22:249–261

    Article  Google Scholar 

  • Nesje A, Lie Ø, Dahl SO (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J Quat Sci 15:587–601

    Google Scholar 

  • Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. The Holocene 11(3):267–280

    Article  Google Scholar 

  • Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA (2008a) Norwegian mountain glaciers in the past, present and future. Glob Planet Change 60:10–27

    Article  Google Scholar 

  • Nesje A, Dahl SO, Thun T, Nordli Ø (2008b) The “Little Ice Age” glacial expansion in western Scandinavia: summer temperature or winter precipitation? Clim Dyn 30:789–801

    Article  Google Scholar 

  • Nordgulen Ø, Andresen A (2013) De eldeste bergartene dannes, Jordas Urtid; 4600–850 Ma. In: Ramberg IB, Bryhni I, Nøttvedt A, Rangnes K (eds) Landet blir til. Norges geologi. 2. utgave. Norsk Geologisk Forening, Trondheim, Norway, pp 62–119

    Google Scholar 

  • Nussbaumer SU, Nesje A, Zumbühl HJ (2011) Historical glacier fluctuations of Jostedalsbreen and Folgefonna (southern Norway) reassessed by new pictorial and written evidence. The Holocene 21:455–471

    Article  Google Scholar 

  • Otto JC (2019) Proglacial lakes in high mountain environments. In: Heckmann T, Morche D (eds) Geomorphology of proglacial systems: landform and sediment dynamics in recently deglaciated alpine landscapes. Springer, Basel, pp 231–247

    Google Scholar 

  • Øyen PA (1906) Klima und Gletscherschwankungen in Norwegen. Zeitschrift für Gletscherkunde 1:46–61

    Google Scholar 

  • Paul F, Linsbauer A (2012) Modeling of glacier bed topography from glacier outlines, central branch lines and a DEM. Int J Geograph Inform Sci 26(7):1173–1190

    Article  Google Scholar 

  • Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed by satellite: consequences for future monitoring strategies. Glob Planet Change 56(1–2):111–122

    Article  Google Scholar 

  • Paul F, Andreassen LM, Winsvold SH (2011) A new glacier inventory for the Jostedalsbreen region, Norway, from Landsat TM scenes of 2006 and changes since 1966. Ann Glaciol 52(59):153–162

    Article  Google Scholar 

  • Racoviteanu AE, Paul F, Raup B, Khalsa SJS, Armstrong R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop. Boulder, Colorado, USA. Ann Glaciol 50(53)

    Google Scholar 

  • Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Change 114:527–547

    Article  Google Scholar 

  • Rasmussen LA, Andreassen LM, Baumann S, Conway H (2010) Little Ice Age precipitation in Jotunheimen, southern Norway. The Holocene 20(7):1039–1045

    Article  Google Scholar 

  • Raup B, Khalsa SJS (2007) GLIMS Analysis Tutorial. Digital Media: https://www.glims.org/MapsAndDocs/assets/GLIMS_Analysis_Tutorial_a4.pdf

  • Rekstad J (1902) Iakttagelser fra bræer i Sogn og Nordfjord. Norges geologiske undersøkelse, Aarbog 1902(3):1–48

    Google Scholar 

  • Sætrang AC, Wold B (1986) Results from the radio-echo sounding on parts of the Jostedalsbreen ice cap, Norway. Ann Glaciol 8:156–158

    Article  Google Scholar 

  • Sutherland JL, Carrivick JL, Shulmeister J, Quincey DJ, James WHM (2019) Ice-contact proglacial lakes associated with the Last Glacial Maximum across the Southern Alps, New Zealand. Quat Sci Rev 213:67–92

    Article  Google Scholar 

  • Trachsel M, Nesje A (2015) Modelling annual mass balances of eight Scandinavian glaciers using statistical models. The Cryosphere 9:1401–1414

    Article  Google Scholar 

  • Trenberth K, Zhang, R, National Center for Atmospheric Research Staff (eds) (2019) The climate data guide: Atlantic Multi-decadal Oscillation (AMO). https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo. Accessed 10 May 2019

  • Tweed FS, Russell AJ (1999) Controls on the formation and sudden drainage of glacier-impounded lakes: implications for jökulhlaup characteristics. Prog Phys Geogr 23:79–110

    Article  Google Scholar 

  • Vasskog K, Paasche Ø, Nesje A, Boyle JF, Birks HJB (2012) A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier. Quat Res 77:192–204

    Article  Google Scholar 

  • Wang W, Xiang Y, Gao Y, Lu A, Yao T (2014) Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrol Process 29(6):859–874

    Article  Google Scholar 

  • Wilson R, Glasser NF, Reynolds JM, Harrison S, Iribarren Anacona P, Schaefer M, Shannon S (2018) Glacial lakes of the Central and Patagonian Andes. Glob Planet Change 162:275–291

    Article  Google Scholar 

  • Winkler S (2021) Terminal moraine formation processes and geomorphology of glacier forelands at the selected outlet glaciers of Jostedalsbreen, South Norway. In: Beylich AA (ed) Landscapes and Landforms of Norway. Springer, Dordrecht

    Google Scholar 

  • Winkler S, Matthews JA (2010) Observations on terminal moraine-ridge formation during recent advances of southern Norwegian glaciers. Geomorphology 116:87–106

    Article  Google Scholar 

  • Winkler S, Nesje A (2009) Perturbation of climatic response at maritime glaciers? Erdkunde 63:229–244

    Article  Google Scholar 

  • Winkler S, Haakensen N, Nesje A, Rye N (1997) Glaziale Dynamik in Westnorwegen—Ablauf und Ursachen des aktuellen Gletschervorstoßes am Jostedalsbreen. Petermanns Geogr Mitt 141:43–63

    Google Scholar 

  • Winkler S, Elvehøy H, Nesje A (2009) Glacier fluctuations of Jostedalsbreen, western Norway, during the past 20 years: the sensitive response of maritime mountain glaciers. Holocene 19:389–408

    Article  Google Scholar 

  • Winsvold SH, Andreassen LM, Kienholz C (2014) Glacier area and length changes in Norway from repeat inventories. The Cryosphere 8:1885–1903

    Article  Google Scholar 

  • Zemp M, Paul F, Hoelzle M, Haeberli W (2008) Alpine glacier fluctuations 1850–2000: an overview and spatio-temporal analysis of available data and its representativity. In: Orlove B, Luckman B, Wiegandt E (eds) Darkening peaks: glacier retreat, science, and society. University of California Press, Berkeley and Los Angeles, pp 152–167

    Google Scholar 

Download references

Acknowledgements

The authors thank Stefan Winkler for informative and constructive comments on Section 4.2. The revised and final version of this chapter was sent to Springer in August 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Laute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laute, K., Beylich, A.A. (2021). Recent Glacier Changes and Formation of New Proglacial Lakes at the Jostedalsbreen Ice Cap in Southwest Norway. In: Beylich, A.A. (eds) Landscapes and Landforms of Norway. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-52563-7_4

Download citation

Publish with us

Policies and ethics