Skip to main content

Sedation and Analgesia in Brain-Injured Children

  • Chapter
  • First Online:
Sedation and Analgesia for the Pediatric Intensivist

Abstract

Traumatic brain injury (TBI) in children is one of the most common reasons for PICU admission. The understanding of the pathophysiology and the pharmacological management of intracranial hypertension is critical to good outcomes. Focus is on prevention of secondary brain injury by careful use of sedation, paralysis, and pharmacological coma. Management of seizures and reduction of cerebral metabolic rate of oxygenation are important components of TBI management in the PICU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. MMWR Surveill Summ. 2017;66(SS-9):1–16.

    Article  Google Scholar 

  2. Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, Davis-O’Reilly C, Hart EL, Bell MJ, Bratton SL, Grant GA, Kissoon N, Reuter-Rice KE, Vavilala MS, Wainwright MS. Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: update of the brain trauma foundation guidelines. Pediatr Crit Care Med. 2019;20:S1–S82.

    Article  Google Scholar 

  3. LaRovere K, Graham R, Tasker R. Pediatric neurocritical care: a neurology consultation model and implication for education and training. Pediatr Neurol. 2013;48:206–11.

    Article  Google Scholar 

  4. Kochanek PM, Bayir H, Jenkins LW, Clark RSB. Ch. 52 molecular biology of brain injury. In: Rogers’ textbook of pediatric intensive care. 4th ed; Lippincott, Williams and Wilkins, Philadelphia, PA 2008. p. 826–43.

    Google Scholar 

  5. Jenkins LW, Kochanek PM. Ch. 51 developmental neurobiology, neurophysiology and the PICU. Rogers’ textbook of pediatric intensive care . 4th Ed: Lippincott, Williams and Wilkins, Philadelphia, PA 2008. p. 810–25.

    Google Scholar 

  6. Balakrishnan B, Zhang L, Simpson PM, Hanson SJ. Impact of the timing of placement of an intracranial pressure monitor on outcomes in children with severe traumatic brain injury. Pediatr Neurosurg. 2018a;53(6):379–86.

    Article  Google Scholar 

  7. Adams CA, Stein DM, Morrison JJ, Scalea TM. Does intracranial pressure management hurt more than it helps in traumatic brain injury? Trauma Surg Acute Care Open. 2018;3(1):e000142.

    Article  Google Scholar 

  8. Badenes R, De Fez M. Sedation in neurocritical units. In: Khan Z, editor. Challenging topics in neuroanesthesia and neurocritical care. Cham: Springer; 2017. First Online24 May 2017.

    Google Scholar 

  9. Helbok R, Kurtz P, Schmidt MJ, Stuart MR, Fernandez L, Connolly SE, Lee K, Schmutzhard E, Mayer SA, Claassen J, Badjatia N. Effects of the neurological wake up test on clinical examination, intracranial pressure, brain metabolism and brain tissue oxygenation in severely brain-injured patients. Crit Care. 2012;16(6):R226.

    Article  Google Scholar 

  10. Skoglund K, Hillered L, Purins K, Tsitsopoulos PP, Flygt J, Engquist H, Lewén A, Enblad P, Marklund N. The neurological wake-up test does not alter cerebral energy metabolism and oxygenation in patients with severe traumatic brain injury. Neurocrit Care. 2014;20(3):413–26.

    Article  CAS  Google Scholar 

  11. Marklund N. The neurological wake-up test-a role in neurocritical care monitoring of traumatic brain injury patients? Front Neurol. 2017;8:540.

    Article  Google Scholar 

  12. Go SL, Singh JM. Pro/con debate: should PaCO2 be tightly controlled in all patients with acute brain injuries? Crit Care. 2013;17(1):202.

    Article  Google Scholar 

  13. Davis DP, Dunford JV, Poste JC, Ochs M, Holbrook T, Fortlage D, Size MJ, Kennedy F, Hoyt DB. The impact of hypoxia and hyperventilation on outcome after paramedic rapid sequence intubation of severely head-injured patients. J Trauma. 2004;57:1–8.

    Article  Google Scholar 

  14. Warner KJ, Cuschieri J, Copass MK, Jurkovich GJ, Bulger EM. The impact of prehospital ventilation on outcome after severe traumatic brain injury. J Trauma. 2007;62:1330–6. discussion 1336–8

    Google Scholar 

  15. Von Helden A, Schneider GH, Unterberg A, Lanksch WR. Monitoring of jugular venous oxygen saturation in comatose patients with subarachnoid haemorrhage and intracerebral haematomas. Acta Neurochir Suppl (Wien). 1993;59:102–6.

    Google Scholar 

  16. Salonia R, Bell MJ, Kochanek PM, Berger RP. The utility of near infrared spectroscopy in detecting intracranial hemorrhage in children. J Neurotrauma. 2012;29(6):1047–53.

    Article  Google Scholar 

  17. Blohm ME, Obrecht D, Hartwich J, Singer D. Effect of cerebral circulatory arrest on cerebral near-infrared spectroscopy in pediatric patients. Paediatr Anaesth. 2014;24(4):393–9.

    Article  Google Scholar 

  18. Balakrishnan B, Dasgupta M, Gajewski K, Hoffmann RG, Simpson PM, Havens PL, Hanson SJ. Low near infrared spectroscopic somatic oxygen saturation at admission is associated with need for lifesaving interventions among unplanned admissions to the pediatric intensive care unit. J Clin Monit Comput. 2018b;32(1):89–96.

    Article  Google Scholar 

  19. Weiss M, Dullenkopf A, Kolarova A, Schulz G, Frey B, Baenziger O. Near-infrared spectroscopic cerebral oxygenation reading in neonates and infants is associated with central venous oxygen saturation. Paediatr Anaesth. 2005;15(2):102–9.

    Article  Google Scholar 

  20. Becerra L, Aasted CM, Boas DA, George E, Yücel MA, Kussman BD, Kelsey P, Borsook D. Brain measures of nociception using near-infrared spectroscopy in patients undergoing routine screening colonoscopy. Pain. 2016;157(4):840–8.

    Article  CAS  Google Scholar 

  21. Chen JW, Gombart ZJ, Rogers S, Gardiner SK, Cecil S, Bullock RM. Pupillary reactivity as an early indicator of increased intracranial pressure: the introduction of the neurological pupil index. Surg Neurol Int. 2011;2:82.

    Article  CAS  Google Scholar 

  22. Clark A, Clarke TN, Gregson B, Hooker PN, Chambers IR. Variability in pupil size estimation. Emerg Med J. 2006;23(6):440–1.

    Article  CAS  Google Scholar 

  23. Meeker M, Du R, Bacchetti P, et al. Pupil examination: validity and clinical utility of an automated pupillometer. J Neurosci Nurs. 2005;37(1):34–40.

    Article  Google Scholar 

  24. McNett M, Moran C, Janki C, Gianakis A. Correlations between hourly Pupillometer readings and intracranial pressure values. J Neurosci Nurs. 2017;49(4):229–34.

    Article  Google Scholar 

  25. Yu W, Gao D, Jin W, Liu S, Qi S. Propofol prevents oxidative stress by decreasing the ischemic accumulation of succinate in focal cerebral ischemia-reperfusion injury. Neurochem Res. 2018;43(2):420–9.

    Article  CAS  Google Scholar 

  26. Zheng X, Huang H, Liu J, Lim LM, Luo T. Propofol attenuates inflammatory response in LPS-activated microglia by regulating the miR-155/SOCS1 pathway. Inflammation. 2018;41(1):11–9.

    Article  CAS  Google Scholar 

  27. Lu Y, Gu Y, Ding X, Wang J, Chen J, Miao C. Intracellular Ca2+ homeostasis and JAK1/STAT3 pathway are involved in the protective effect of propofol on BV2 microglia against hypoxia-induced inflammation and apoptosis. PLoS One. 2017;12(5):e0178098.

    Article  CAS  Google Scholar 

  28. Patel MB, Bednarik J, Lee P, Shehabi Y, Salluh JI, Slooter AJ, Klein KE, et al. Delirium monitoring in neurocritically ill patients: a systematic review. Crit Care Med. 2018;46(11):1832–41.

    Article  Google Scholar 

  29. Mody K, Kaur S, Mauer EA, Gerber LM, Greenwald BM, Silver G, Traube C. Benzodiazepines and development of delirium in critically ill children: estimating the causal effect. Crit Care Med. 2018;46(9):1486–91.

    Article  CAS  Google Scholar 

  30. Smith HAB, Gangopadhyay M, Goben CM, Jacobowski NL, Chestnut MH, Thompson JL, Chandrasekhar R, Williams SR, Griffith K, Ely EW, Fuchs DC, Pandharipande PP. Delirium and benzodiazepines associated with prolonged ICU stay in critically ill infants and young children. Crit Care Med. 2017;45(9):1427–35.

    Article  CAS  Google Scholar 

  31. Jellish WS, Edelstein S. Neuroanesthesia. Handb Clin Neurol. 2014;121:1623–33.

    Article  Google Scholar 

  32. De Nadal M, Munar F, Poca MA, Sahuquillo J, Garnacho A, Rosselló J. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe head injury: absence of correlation to cerebral autoregulation. Anesthesiology. 2000;92(1):11–9.

    Article  Google Scholar 

  33. Roberts DJ, Hall RI, Kramer AH, Robertson HL, Gallagher CN, Zygun DA. Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med. 2011;39(12):2743–51.

    Article  CAS  Google Scholar 

  34. Carr ZJ, Cios TJ, Potter KF, Swick JT. Does Dexmedetomidine ameliorate postoperative cognitive dysfunction? A brief review of the recent literature. Curr Neurol Neurosci Rep. 2018;18(10):64.

    Article  CAS  Google Scholar 

  35. Liu C, Fu Q, Mu R, Wang F, Zhou C, Zhang L, Yu B, Zhang Y, Fang T, Tian F. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-Caspase-11 pathway. Brain Res. 2018;1701:246–54.

    Article  CAS  Google Scholar 

  36. Li F, Wang X, Deng Z, Zhang X, Gao P, Liu H. Dexmedetomidine reduces oxidative stress and provides neuroprotection in a model of traumatic brain injury via the PGC-1α signaling pathway. Neuropeptides. 2018;72:58–64.

    Article  CAS  Google Scholar 

  37. Wang YQ, Tang YF, Yang MK, Huang XZ. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury in rats via inhibition of hypoxia-inducible factor-1α. J Cell Biochem. 2019;120:7834–44.

    Google Scholar 

  38. Bindra A, Kaushal A, Prabhakar H, Chaturvedi A, Chandra PS, Tripathi M, Subbiah V, Sathianathan S, Banerjee J, Prakash C. Neuroprotective role of dexmedetomidine in epilepsy surgery: a preliminary study. Neurol India. 2019;67(1):163–8.

    Google Scholar 

  39. Ketharanathan N, Yamamoto Y, Rohlwink U, Wildschut ED, Hunfeld M, de Lange ECM, Tibboel D. Analgosedation in paediatric severe traumatic brain injury (TBI): practice, pitfalls and possibilities. Childs Nerv Syst. 2017;33(10):1703–10.

    Article  CAS  Google Scholar 

  40. Mtaweh H, Bell MJ. Management of pediatric traumatic brain injury. Curr Treat Options Neurol. 2015;17(5):348.

    Article  Google Scholar 

  41. Hertle DN, Dreier JP, Woitzik J, Hartings JA, Bullock R, Okonkwo DO, Shutter LA, Vidgeon S, Strong AJ, Kowoll C, Dohmen C, Diedler J, Veltkamp R, Bruckner T, Unterberg AW, Sakowitz OW, Cooperative Study of Brain Injury Depolarizations (COSBID). Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain. 2012;135(Pt 8):2390–8.

    Article  Google Scholar 

  42. Carlson AP, Abbas M, Alunday RL, Qeadan F, Shuttleworth CW. Spreading depolarization in acute brain injury inhibited by ketamine: a prospective, randomized, multiple crossover trial. J Neurosurg. 2018;1:1–7.

    Google Scholar 

  43. Gibbs JM. The effect of intravenous ketamine on cerebrospinal fluid pressure. Br J Anaesth. 1972;44(12):1298–302.

    Article  CAS  Google Scholar 

  44. Ben Yehuda Y, Watemberg N. Ketamine increases opening cerebrospinal pressure in children undergoing lumbar puncture. J Child Neurol. 2006;21(6):441–3.

    Article  Google Scholar 

  45. Wyte SR, Shapiro HM, Turner P, Harris AB. Ketamine-induced intracranial hypertension. Anesthesiology. 1972;36(2):174–6.

    Article  CAS  Google Scholar 

  46. Burgoin A, Albanèse J, Léone M, Sampol-Manos E, Viviand X, Martin C. Effects of sufentanil or ketamine administered in target-controlled infusion on the cerebral hemodynamics of severely brain-injured patients. Crit Care Med. 2005;33(5):1109–13.

    Article  CAS  Google Scholar 

  47. Bar-Joseph G, Guilburd Y, Tamir A, Guilburd JN. Effectiveness of ketamine in decreasing intracranial pressure in children with intracranial hypertension. J Neurosurg Pediatr. 2009;4(1):40–6.

    Article  Google Scholar 

  48. Sanfilippo F, Santonocito C, Veenith T, Astuto M, Maybauer MO. The role of neuromuscular blockade in patients with traumatic brain injury: a systematic review. Neurocrit Care. 2015;22(2):325–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin Havlin or Lindsey Rasmussen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Havlin, K., Rasmussen, L. (2021). Sedation and Analgesia in Brain-Injured Children. In: Kamat, P.P., Berkenbosch, J.W. (eds) Sedation and Analgesia for the Pediatric Intensivist. Springer, Cham. https://doi.org/10.1007/978-3-030-52555-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52555-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52554-5

  • Online ISBN: 978-3-030-52555-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics