Skip to main content

Progestogens in Infertility Practice

  • Chapter
  • First Online:
Progestogens in Obstetrics and Gynecology

Abstract

Inadequate or deficient progesterone production has been claimed to be responsible for subfertility, implantation failures and recurrent miscarriage. Consequently, in infertility practice, progestogens are widely used in the luteal phase, but there is debate over, the optimal preparation, route of administration and duration of treatment. The progestogens used in infertility practice have been shown to induce changes in a number of immunocompetent cells by different molecular and cellular mechanisms.

Progesterone use for endometrial ripening and implantation is also discussed with reference to the window of receptivity, cytokine changes and progesterone induced changes brought about by nitric oxide synthesis causing local vasodilation and uterine muscle quiescence.

This chapter attempts to connect the endocrine effects of progestogens with the immunomodulatory and cytokine changes associated with progesterone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen WM. The isolation of crystalline progestin. Science. 1935;82:89–93.

    Article  CAS  PubMed  Google Scholar 

  2. Kolibianakis EM, Devroey P. The luteal phase after ovarian stimulation. Reprod Biomed Online. 2002;5(Suppl 1):26–35.

    Article  PubMed  Google Scholar 

  3. Martin J, Dominguez F, Avila S, et al. Human endometrial receptivity gene regulation. J Reprod Immunol. 2002;55:131–9.

    Article  CAS  PubMed  Google Scholar 

  4. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.

    Article  CAS  PubMed  Google Scholar 

  5. Tuckerman E, Laird SM, Steward R, et al. Markers of endometrial function in women with unexplained recurrent pregnancy loss: a comparison between morphologically normal and retarded endometrium. Hum Reprod. 2004;19:196–205.

    CAS  PubMed  Google Scholar 

  6. Bulletti C, de Ziegler D. Uterine contractility and embryo implantation. Curr Opin Obstet Gynecol. 2005;7:265–76.

    Article  Google Scholar 

  7. Fanchin R, Righini C, Olivennes F, et al. lUterine contractions at the time of embryo transfer alter pregnancy rates after in-vitro fertilization. Hum Reprod. 1998;13:1968–74.

    Article  CAS  PubMed  Google Scholar 

  8. Paulson RJ, Sauer MV, Lobo RA. Embryo implantation after human in vitro fertilization: importance of endometrial receptivity. Fertil Steril. 1990;53:870–4.

    Article  CAS  PubMed  Google Scholar 

  9. Chaouat G, Menu E, Wegmann TG. Role of lymphokines of the CSF family and of TNF, gamma interferon and IL-2 in placental growth and fetal survival studied in two murine models of spontaneous resorptions. In: Chaouat G, Mowbray JF, editors. Cellular and Molecular Biology of the Maternal-fetal Relationship. Paris: INSERM/John Libbey Eurotext; 1991. p. 91.

    Google Scholar 

  10. Garcia-Lloret MI, Morrish DW, Wegmann TG, Honore L, Turner AR, Guilbert LJ. Demonstration of functional cytokine-placental interactions: CSF-1 and GM-CSF stimulate human cytotrophoblast differentiation and peptide hormone secretion. Exp Cell Res. 1994;214:46–54.

    Article  CAS  PubMed  Google Scholar 

  11. Ashkar AA, Di Santo JP, Croy AB. Interferon γ contributes to initiation of uterine vascular modification, Decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192:259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hambartsoumian E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am J Reprod Immunol. 1998;39:137–43.

    Article  CAS  PubMed  Google Scholar 

  13. Curry TE, Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev. 2003;24:428–65.

    Article  CAS  PubMed  Google Scholar 

  14. Aplin JD. Adhesion molecules in implantation. Rev Reprod. 1997;2:84–112.

    Article  CAS  PubMed  Google Scholar 

  15. Lin H, Mosmannn TR, Guilbert L, et al. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol. 1993;151:4562–73.

    CAS  PubMed  Google Scholar 

  16. Dosiou C, Giudice L. Neural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev. 2005;261:44–62.

    Article  CAS  Google Scholar 

  17. Alimohamadi S, Javadian P, Gharedaghi MH, Javadian N, Alinia H, Khazardoust S, Borna S, Hantoushzadeh S. Progesterone and threatened abortion: a randomized clinical trial on endocervical cytokine concentrations. J Reprod Immunol. 2013;98:52–60.

    Article  CAS  PubMed  Google Scholar 

  18. Aisemberg J, Vercelli CA, Bariani MV, Billi SC, Wolfson ML, Franchi AM. Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone. PLoS One. 2013;8(2):e56161. https://doi.org/10.1371/journal.pone.0056161. Epub 2013 Feb 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raghupathy R, Al Mutawa E, Makhseed M, Azizieh F, Szekeres-Bartho J. Modulation of cytokine production by dydrogesterone in lymphocytes from women with recurrent miscarriage. BJOG. 2005;112(8):1096–101.

    Article  CAS  PubMed  Google Scholar 

  20. Hudić I, Szekeres-Bartho J, Fatušić Z, Stray-Pedersen B, Dizdarević-Hudić L, Latifagić A, Hotić N, Kamerić L, Mandžić A. Dydrogesterone supplementation in women with threatened preterm delivery--the impact on cytokine profile, hormone profile, and progesterone-induced blocking factor. J Reprod Immunol. 2011;92(1–2):103–7.

    Article  PubMed  CAS  Google Scholar 

  21. Retamales I, Carrasco I, Troncoso JL, Las Heras J, Devoto L, Vega M. Morpho-functional study of human luteal cell subpopulations. Hum Reprod. 1994;9:591–6.

    Article  CAS  PubMed  Google Scholar 

  22. Fraser HM, Lunn SF. Regulatiion and manipulation of angiogenesis in the primate corpus luteum. Reproduction. 2001;121:3554–62.

    Article  Google Scholar 

  23. Suzuki T, Sasano H, Takaya R, et al. Cyclic changes of vasculature and vascular phenogtypes in normal human ovaries. Hum Reprod. 1988;13:953–9.

    Article  Google Scholar 

  24. Schams D, Berisha B. Regulation of corpus luteum function in cattle-an overview. Reprod Domest Anim. 2004;39:241–51.

    Article  CAS  PubMed  Google Scholar 

  25. Fatemi HM, Bourgain C, Donoso P, et al. Effect of oral administration of dydrogestrone versus vaginal administration of natural micronized dprogesterone on thee secretory transformation of endometrium and luteal endocrine profile in patients with premature ovarian failure: a proof of concept. Hum Reprod. 2007;22:1260–3.

    Article  CAS  PubMed  Google Scholar 

  26. Poenzias AS. Luteal phase support. Fertile Steril. 2002;77:318–23.

    Article  Google Scholar 

  27. McNatty KP, Smith DM, Makris A, et al. The microenvironment of the human antralfollicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells,, and the status of the oocyte in vivo and in vitro. J Clin Endocrinol Metab. 1979;49:851–60.

    Article  CAS  PubMed  Google Scholar 

  28. McNatty KP, Makris A, DeGrazia C, et al. The production of progesterone, androgens, and estrogens by granulosa cells, thecal tissue, and stromal tissue from human ovaries in vitro. J Clin Endocrinol Metab. 1979;49:687–99.

    Article  CAS  PubMed  Google Scholar 

  29. Norris RP, Freudzon M, Mehlmann LM, et al. Luteinizing hormone causes MAP minase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development. 2008;135:3229–38.

    Article  CAS  PubMed  Google Scholar 

  30. Miller WL. Mechanizm of StAR’s regulation of mitochondrial cholesterol import. Mol Cell Endocrinol. 2007;265-6:46–50.

    Article  CAS  Google Scholar 

  31. Kiriakidou M, McAllister JM, Sugawara T, Strauss JF 3rd. Expression of steroidogenic acute regulatory protein (StAR) in the human ovary. J Clin Endocrinol Metab. 1986;81:4122–8.

    Google Scholar 

  32. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–10.

    Article  Google Scholar 

  33. Filicori M, Butler JP, Crowley WF Jr. Neuroendocrine regulation of the corpus luteum in the human. Evidence for pulsatile progesterone secretion. J Clin Invest. 1984;73:1638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Usadi RS, Groll JM, Lessey BA, Lininger RA, Zaino RJ, Fritz MA, et al. Endometrial development and function in experimentally induced luteal phase deficiency. J Clin Endocrinol Metab. 2008;93:4058–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alliende ME, Arraztoa JA, Guajardo U, Mellado F. Towards the clinical evaluation of the luteal phase in fertile women: a preliminary study of normative urinary hormone profiles. Front Public Health. 2018;6:147.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sharkey AM, Smith SK. The endometrium as a cause of implantation failure. Best Pract res Clin Obstet Gynaecol. 2003;7:289–307.

    Article  Google Scholar 

  37. Lessey BA, Killam AP, Metzger DA, Haney AF, Greene GL, McCarty KS Jr. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab. 1988;67:334–40.

    Article  CAS  PubMed  Google Scholar 

  38. Díaz-Gimeno P, Horcajadas JA, Martínez-Conejero JA, Esteban FJ, Alamá P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95:50–60.

    Article  PubMed  CAS  Google Scholar 

  39. Huybayter ZR, Muasher SJ. Luteal supplementation in vitro fertilization: more questions than answers. Fertil Steril. 2008;89:749–58.

    Article  CAS  Google Scholar 

  40. Huytchinson-Williams KA, Lunefeld B, Diamond MP, et al. Human chorionic gonadotropin, estradiol, and progesterone profiles in conception and non-conception cycles in an in vitro fertilization program. Fertil Steril. 1989;52:441–5.

    Article  Google Scholar 

  41. Check JH. Progesterone therapy versus follicle maturing drugs possible opposite effects on embryo implantation. Clin Exp Obstet Gynecol. 2002;29:5–10.

    CAS  PubMed  Google Scholar 

  42. Macklon NS, Fauser BC. Impact of ovarian hyper-stimulation on the luteal phase. J Reprod Fertil Suppl. 2000;55:101–8.

    CAS  PubMed  Google Scholar 

  43. Erdem A, Erdem M, Atmaca S, Guler I. Impact of luteal phase support on pregnancy rates in intrauterine insemination cycles; a prospective randomized study. Fertil Steril. 2009;91:2508–13.

    Article  PubMed  Google Scholar 

  44. Hill MJ, Whitcomb BW, Lewis TD, Wu M, Terry N, DeCherney AH, et al. Progesterone luteal support after ovulation induction and intrauterine insemination: a systematic review and meta-analysis. Fertil Steril. 2013;100:1373–80.

    Article  CAS  PubMed  Google Scholar 

  45. Miralpeix E, González-Comadran M, Solà I, Manau D, Carreras R, Checa MA. Efficacy of luteal phase support with vaginal progesterone in intrauterine insemination: a systematic review and meta-analysis. J Assist Reprod Genet. 2014;31:89–100.

    Article  PubMed  Google Scholar 

  46. Biberoglu EH, Tanrikulu F, Erdem M, Erdem A, Biberoglu KO. Luteal phase support in intrauterine insemination cycles: a prospective randomized study of 300 mg versus 600 mg intravaginal progesterone tablet. Gynecol Endocrinol. 2015;19:1–3.

    Google Scholar 

  47. Segal L, Fainaru O, Kol S. Anovulatory patients demonstrate a sharp decline in LH levels upon GnRH antagonist administration during IVF cycles. Rambam Maimonides Med J. 2017;28:8.

    Google Scholar 

  48. Forman RG, Eychenne B, Nessmann C, et al. Assessing the early luteal phase in-vitro fertilization cycles: relationships between plasma steroids, endometrial receptors, and endometrial histology. Fertil Steril. 1989;51:310–6.

    Article  CAS  PubMed  Google Scholar 

  49. Li TC, Tuckerman EM, Laird SM. Endometrial factors in recurrent miscarriage. Hum Reprod Update. 2002;1:43–52.

    Article  Google Scholar 

  50. Tannus S, Burke Y, McCartney CR, Kol S. GnRH-agonist triggering for final oocyte maturation in GnRH-antagonist IVF cycles induces decreased LH pulse rate and amplitude in early luteal phase: a possible luteolysis mechanism. Gynecol Endocrinol. 2017;33:741–5.

    Article  CAS  PubMed  Google Scholar 

  51. Resenberg SM, Luciano AA, Riddick DH. The luteal phase defect: the relative frequency of, and encouraging response to, treatment with vaginal progesterone. Fertil Steril. 1980;34:17–20.

    Article  Google Scholar 

  52. Hutchinson-Williams KA, DeCherney AH, Lavy G, et al. Luteal rescue in vitro fertilization-embryo transfer. Fertil Steril. 1990;53:495–500.

    Article  CAS  PubMed  Google Scholar 

  53. Pritts EA, Atwood AK. Luteal phase support in infertility treatment: a meta-analysis of the randomized trials. Hum Reprod. 2002;17:2287–99.

    Article  CAS  PubMed  Google Scholar 

  54. Nosarka S, Kruger T, Siebert I, Grove D. Luteal phase support in in vitro fertilization: meta-analysis of randomized trials. Gynecol Obstet Investig. 2005;60:67–74.

    Article  Google Scholar 

  55. van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2015;7:CD009154.

    Google Scholar 

  56. Kol S, Humaidan P, Itskovitz-Eldor J. GnRH agonist ovulation trigger and hCG-based, progesterone-free luteal support: a proof of concept study. Hum Reprod. 2011;26:2874–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kol S, Breyzman T, Segal L, Humaidan P. ‘Luteal coasting’ after GnRH agonist trigger - individualized, HCG-based, progesterone-free luteal support in ‘high responders’: a case series. Reprod Biomed Online. 2015;31:747–51.

    Article  CAS  PubMed  Google Scholar 

  58. Devroey P, Palermo G, Bourgain C, et al. Progesterone administration in patients with absent ovaries. Int J Fertil. 1989;34:188–93.

    CAS  PubMed  Google Scholar 

  59. Ludwig M, Schwartz P, Babahan B, et al. Luteal phase support using either Crinone 8% or Utrogest: results of a prospective randomized study. Eur J Obstet Gynecol Reprod Biol. 2002;103:48–52.

    Article  CAS  PubMed  Google Scholar 

  60. Polyzos NP, Cl M, Papanikolau EG, et al. Vaginal progesterone gel for luteal phase support in IVF/ICSI cycles: a meta-analysis. Fertil Steril. 2010;94:2083–7.

    Article  CAS  PubMed  Google Scholar 

  61. Silverberg KM, Vaughn TC, Hansard LJ, et al. Vaginal (Crinone 8%) gel vs. intramuscular pro progesterone in oil for luteal phase support in in vitro fertilization: a large prospective trial. Fertil Steril. 2012;97:344–8.

    Article  CAS  PubMed  Google Scholar 

  62. Gorkemli H, Ak D, Akyurek C, et al. Comparison of pregnancy outcomes, of progesterone or progesterone + estradiol for luteal phase support in IFSI-ET cycles. Gynecol Obstet Investig. 2004;58:140–4.

    Article  CAS  Google Scholar 

  63. Kolibianakis EM, Venetis CA, Papanikolau EG, et al. Estrogen addition to progesterone for luteal phase support in cycles stimulated with GnRH analogues and gonadotrophins for IVF: a systematic review and meta-analysis. Hum Reprod. 2008;23:1346–54.

    Article  CAS  PubMed  Google Scholar 

  64. van der Linden M, Buckingham K, Farquhar C, et al. Luteal phase support for assisted reproduction cycles. Cochrane Data base Syst rev. 2011;5:CD009154.

    Google Scholar 

  65. Pirard C, Donnez J, Loumaye E. GnRH agonist as luteal phase support in assisted reproduction technique cycles: results of a pilot study. Hum Reprod. 2006;21:1894–900.

    Article  CAS  PubMed  Google Scholar 

  66. Kykrou D, Kolibianakis EM, Fatemi HM, et al. Increased live birth rates with GnRH agonist addition for luteal support in ICSI/IVF cycles: a systematic review and meta-analysis. Hum Reprod Update. 2011;17:734–40.

    Article  CAS  Google Scholar 

  67. Queisser-Luft A. Dydrogesterone use during pregnancy: overview of birth defects reported since 1977. Early Hum Dev. 2009;85:375–7.

    Article  CAS  PubMed  Google Scholar 

  68. King RJ, Whitehead MI. Assessment of the potency of orally administered progestins in women. Fertil Steril. 1986;46:1062–6.

    Article  CAS  PubMed  Google Scholar 

  69. Chakravarty BN, Shirazee HH, Dam P, et al. Oral dydrogesterone versus intravaginal micronised progesterone as luteal phase support in assisted reproductive technology (ART) cycles: results of a randomized study. J Steroid Biochem Mol Biol. 2005;97:416–20.

    Article  CAS  PubMed  Google Scholar 

  70. Iwase A, Ando H, Toda S, et al. Oral progestogen versus intramuscular progesterone for luteal support after assisted reproductive technology treatment: a prospective randomized study. Arch Gynecol Obstet. 2008;277:319–24.

    Article  CAS  PubMed  Google Scholar 

  71. Patki A, Pawar VC. Modulating fertility outcome in assisted reproductive technologies by the use of Dydrogesterone. Gynaecological Endocrinology. 2007;23(Suppl 1):68–72.

    Article  CAS  Google Scholar 

  72. Tournaye H, Sukhikh GT, Kahler E, Griesinger G. A phase III randomized controlled trial comparing the efficacy, safety and tolerability of oral dydrogesterone versus micronized vaginal progesterone for luteal support in in vitro fertilization. Hum Reprod. 2017;32:1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Griesinger G, Blockeel C, Sukhikh GT, Patki A, Dhorepatil B. Oral dydrogesterone versus intravaginal micronized progesterone gel for luteal phase support in IVF: a randomized clinical trial. Hum Reprod. 2018;33:2212–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Carp HJA. Progestogens in luteal phase. Horm Mol Biol Clin Invest. 2020;20190067. https://doi.org/10.1515/hmbci-2019-0067.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameet S. Patki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patki, A.S., Dharmadhikari, M. (2021). Progestogens in Infertility Practice. In: Carp, H.J. (eds) Progestogens in Obstetrics and Gynecology. Springer, Cham. https://doi.org/10.1007/978-3-030-52508-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52508-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52507-1

  • Online ISBN: 978-3-030-52508-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics