Skip to main content

Representation Theory of Complex Semisimple Quantum Groups

  • Chapter
  • First Online:
Complex Semisimple Quantum Groups and Representation Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2264))


In this chapter, we discuss the representation theory of complex semisimple quantum groups. The appropriate notion of a G q-representation here is that of a Harish-Chandra module for G q, which means an essential \(\mathfrak {D}(G_q)\)-module with K q-types of finite multiplicity, see Sect. 6.2. In particular, the irreducible unitary representations of G q belong to this class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Y. Arano, Unitary spherical representations of Drinfeld doubles. J. Reine Angew. Math. (2014) (preprint, to appear in). arXiv:1410.6238

    Google Scholar 

  2. Y. Arano, Comparison of unitary duals of Drinfeld doubles and complex semisimple lie groups (2016). preprint arXiv:1605.00866

    Google Scholar 

  3. J.N. Bernstein, S.I. Gelfand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Compos. Math. 41(2), 245–285 (1980)

    Google Scholar 

  4. J. Dixmier, Enveloping Algebras, vol. 11 of Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 1996). Revised reprint of the 1977 translation

    Google Scholar 

  5. M. Duflo, Représentations irréductibles des groupes semi-simples complexes, in Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–75). Lecture Notes in Math., Vol. 497 (Springer, Berlin, 1975), pp. 26–88

    Google Scholar 

  6. T.J. Enright, Lectures on Representations of Complex Semisimple Lie Groups, vol. 66 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics (Springer, Berlin-New York, 1981). Published for the Tata Institute of Fundamental Research, Bombay. Lecture notes by Vyjayanthi Sundar

    Google Scholar 

  7. Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I. Trans. Am. Math. Soc. 75, 185–243 (1953)

    Google Scholar 

  8. T.J. Hodges, Double quantum groups and Iwasawa decomposition. J. Algebra 192(1), 303–325 (1997)

    MathSciNet  MATH  Google Scholar 

  9. J.E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, vol. 94 of Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2008)

    Google Scholar 

  10. A. Joseph, Dixmier’s problem for Verma and principal series submodules. J. Lond. Math. Soc. (2) 20(2), 193–204 (1979)

    Google Scholar 

  11. A. Joseph, Quantum Groups and Their Primitive Ideals, vol. 29 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] (Springer, Berlin, 1995)

    Google Scholar 

  12. A. Joseph, G. Letzter, Verma module annihilators for quantized enveloping algebras. Ann. Sci. École Norm. Sup. (4) 28(4), 493–526 (1995)

    Google Scholar 

  13. A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations. Texts and Monographs in Physics (Springer, Berlin, 1997)

    Google Scholar 

  14. P. Podleś, S.L. Woronowicz, Quantum deformation of Lorentz group. Commun. Math. Phys. 130(2), 381–431 (1990)

    MathSciNet  MATH  Google Scholar 

  15. W. Pusz, S.L. Woronowicz, Representations of quantum Lorentz group on Gelfand spaces. Rev. Math. Phys. 12(12), 1551–1625 (2000)

    MathSciNet  MATH  Google Scholar 

  16. W. Pusz, Irreducible unitary representations of quantum Lorentz group. Commun. Math. Phys. 152(3), 591–626 (1993)

    MathSciNet  MATH  Google Scholar 

  17. C. Voigt, R. Yuncken, Equivariant Fredholm modules for the full quantum flag manifold of SUq(3). Doc. Math. 20, 433–490 (2015)

    MathSciNet  MATH  Google Scholar 

  18. M. Yakimov, On the spectra of quantum groups. Mem. Am. Math. Soc. 229(1078), vi+91 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voigt, C., Yuncken, R. (2020). Representation Theory of Complex Semisimple Quantum Groups. In: Complex Semisimple Quantum Groups and Representation Theory. Lecture Notes in Mathematics, vol 2264. Springer, Cham.

Download citation

Publish with us

Policies and ethics