Skip to main content

Introduction

  • Chapter
  • First Online:
  • 474 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In modern societies, reliable and sustainable operation of certain infrastructures plays a fundamental role in the quality of individual life, economic development and security of nations. Large-scale critical infrastructure systems, especially those located in urban areas, such as water distribution networks (WDNs) and smart grids (SGs), are a subject of increasing concern. Therefore, it is of vital importance to develop management systems that guarantee a reliable and sustainable operation of these infrastructures. On the other hand, for the management of these infrastructures, it is also significant that their operation must use efficiently the resources that they can deliver, e.g., water and electricity, and also be efficient from an economic point of view and guarantee future supply.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dai L (1989) Singular control systems. Springer, Berlin Heidelberg, Germany

    Book  MATH  Google Scholar 

  2. Duan G (2010) Analysis and design of descriptor linear systems. Springer, New York, USA

    Book  MATH  Google Scholar 

  3. Araujo J, Barros P, Dorea C (2012) Design of observers with error limitation in discrete-time descriptor systems: a case study of a hydraulic tank system. IEEE Trans Control Syst Technol 20(4):1041–1047

    Article  Google Scholar 

  4. Puig V, Ocampo-Martinez C, Pérez R, Cembrano G, Quevedo J, Escobet T (2017) Real-time monitoring and operational control of drinking-water systems. Springer

    Google Scholar 

  5. Wang Y, Puig V, Cembrano G (2017) Non-linear economic model predictive control of water distribution networks. J Process Control 56:23–34

    Article  Google Scholar 

  6. Biegler L, Campbell S, Mehrmann V (2012) Control and optimization with differential-algebraic constraints. Society for Industrial and Applied Mathematics, Philadelphia, USA

    Google Scholar 

  7. Riaza R (2008) Differential-algebraic systems: analytical aspects and circuit applications. World Scientific Publishing Company, New York, USA

    Book  MATH  Google Scholar 

  8. Stevens B, Lewis FL, Johnson E (2016) Aircraft control and simulation: dynamics, controls design, and autonomous systems. Wiley-Blackwell, New York, USA

    Google Scholar 

  9. Zhang Q, Liu C, Zhang X (2012) Complexity, analysis and control of singular biological systems. Springer, London, UK

    Google Scholar 

  10. Luenberger D, Arbel A (1977) Singular dynamic Leontief systems. Econometrica 45(4):991–995

    Article  MATH  Google Scholar 

  11. Zhang L, Lam J, Zhang Q (1999) Lyapunov and Riccati equations of discrete-time descriptor systems. IEEE Trans Autom Control 44(11):2134–2139

    Article  MathSciNet  MATH  Google Scholar 

  12. Halanay A, Rasvan V (2000) Stability and stable oscillations in discrete time systems. CRC Press

    Google Scholar 

  13. Hsieh C (2013) State estimation for descriptor systems via the unknown input filtering method. Automatica 49(5):1281–1286

    Article  MathSciNet  MATH  Google Scholar 

  14. Ishihara J, Terra M, Bianco A (2010) Recursive linear estimation for general discrete-time descriptor systems. Automatica 46(4):761–766

    Article  MathSciNet  MATH  Google Scholar 

  15. Angeli D, Amrit R, Rawlings J (2012) On average performance and stability of economic model predictive control. IEEE Trans Autom Control 57(7):1615–1626

    Article  MathSciNet  MATH  Google Scholar 

  16. Ellis M, Liu J, Christofides P (2017) Economic model predictive control: theory, formulations and chemical process applications. Springer

    Google Scholar 

  17. Mayne D (2014) Model predictive control: recent developments and future promise. Automatica 50(12):2967–2986

    Article  MathSciNet  MATH  Google Scholar 

  18. Maciejowski J (2002) Predictive control with constraints. Prentice-Hall

    Google Scholar 

  19. Rawlings J, Mayne D (2009) Model predictive control: theory and design. Wis. Nob Hill Pub. cop, Madison

    Google Scholar 

  20. Cembrano G, Quevedo J, Salamero M, Puig V, Figueras J, Martí J (2004) Optimal control of urban drainage systems. A case study. Control Eng Pract 12(1):1–9

    Google Scholar 

  21. Cembrano G, Wells G, Quevedo J, Perez R, Argelaguet R (2000) Optimal control of a water distribution network in a supervisory control system. Control Eng Pract 8(10):1177–1188

    Article  Google Scholar 

  22. Ocampo-Martinez C, Puig V, Cembrano G, Quevedo J (2013) Application of MPC strategies to the management of complex networks of the urban water cycle. IEEE Control Syst 33(1):15–41

    Article  MathSciNet  MATH  Google Scholar 

  23. Pereira M, Muñoz de la Peña D, Limon D, Alvarado I, Alamo T (2016) Application to a drinking water network of robust periodic MPC. Control Eng Pract 57:50–60

    Article  Google Scholar 

  24. Zeng J, Liu J (2015) Economic model predictive control of wastewater treatment processes. Ind Eng Chem Res 54(21):5710–5721

    Article  Google Scholar 

  25. Pereira M, Limon D, Muñoz de la Peña D, Limon D (2017) Robust economic model predictive control of a community micro-grid. Renew Energy 100:3–17

    Article  Google Scholar 

  26. Pereira M, Limon D, Muñoz de la Peña D, Valverde L, Alamo T (2015) Periodic economic control of a nonisolated microgrid. IEEE Trans Ind Electron 62(8):5247–5255

    Article  Google Scholar 

  27. Liu S, Zhang J, Liu J (2015) Economic MPC with terminal cost and application to an oilsand primary separation vessel. Chem Eng Sci 136:27–37

    Article  Google Scholar 

  28. Santander O, Elkamel A, Budman H (2016) Economic model predictive control of chemical processes with parameter uncertainty. Comput Chem Eng 95:10–20

    Article  Google Scholar 

  29. Amrit R, Rawlings J, Angeli D (2011) Economic optimization using model predictive control with a terminal cost. Annu Rev Control 35(2):178–186

    Article  Google Scholar 

  30. Müller M, Angeli D, Allgöwer F (2014) On the performance of economic model predictive control with self-tuning terminal cost. J Process Control 24(8):1179–1186

    Article  Google Scholar 

  31. Ellis M, Durand H, Christofides P (2016) Elucidation of the role of constraints in economic model predictive control. Annu Rev Control 41:208–217

    Article  Google Scholar 

  32. Grüne L (2013) Economic receding horizon control without terminal constraints. Automatica 49(3):725–734

    Article  MathSciNet  MATH  Google Scholar 

  33. Grüne L, Stieler M (2014) Asymptotic stability and transient optimality of economic MPC without terminal conditions. J Process Control 24(8):1187–1196

    Article  Google Scholar 

  34. Liu S, Liu J (2016) Economic model predictive control with extended horizon. Automatica 73:180–192

    Article  MathSciNet  MATH  Google Scholar 

  35. Mayne D, Seron M, Raković S (2005) Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2):219–224

    Article  MathSciNet  MATH  Google Scholar 

  36. Pereira M, Muñoz de la Peña D, Limon D, Alvarado I, Alamo T (2017) Robust model predictive controller for tracking changing periodic signals. IEEE Trans Autom Control 62(10):5343–5350

    Article  MathSciNet  MATH  Google Scholar 

  37. Bayer F, Müller M, Allgöwer F (2018) On optimal system operation in robust economic MPC. Automatica 88:98–106

    Article  MathSciNet  MATH  Google Scholar 

  38. Broomhead T, Manzie C, Shekhar R, Hield P (2015) Robust periodic economic MPC for linear systems. Automatica 60:30–37

    Article  MathSciNet  MATH  Google Scholar 

  39. Huang R, Biegler L, Harinath E (2012) Robust stability of economically oriented infinite horizon NMPC that include cyclic processes. J Process Control 22(1):51–59

    Article  Google Scholar 

  40. Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2016) Diagnosis and fault-tolerant control. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  41. Ding S (2013) Model-based fault diagnosis techniques. Springer, London, UK

    Book  MATH  Google Scholar 

  42. Chadli M, Abdo A, Ding S (2013) Fault detection filter design for discrete-time Takagi-Sugeno fuzzy system. Automatica 49(7):1996–2005

    Article  MathSciNet  MATH  Google Scholar 

  43. Ichalal D, Marx B, Ragot J, Maquin D (2014) Fault detection, isolation and estimation for Takagi-Sugeno nonlinear systems. J Frankl Inst 351(7):3651–3676

    Article  MathSciNet  MATH  Google Scholar 

  44. Lee KS, Park TG (2015) Robust fault detection observer design under fault sensitivity constraints. J Frankl Inst 352(5):1791–1810

    Google Scholar 

  45. Blanchini F, Casagrande D, Giordano G, Miani S, Olaru S, Reppa V (2017) Active fault isolation: a duality-based approach via convex programming. SIAM J Control Optim 55(3):1619–1640

    Article  MathSciNet  MATH  Google Scholar 

  46. Raka S, Combastel C (2013) Fault detection based on robust adaptive thresholds: a dynamic interval approach. Annu Rev Control 37(1):119–128

    Article  Google Scholar 

  47. Xu F, Puig V, Ocampo-Martinez C, Stoican F, Olaru S (2014) Actuator-fault detection and isolation based on set-theoretic approaches. J Process Control 24(6):947–956

    Article  Google Scholar 

  48. Puig V, Quevedo J, Escobet T, Nejjari F, De Las Heras S (2008) Passive robust fault detection of dynamic processes using interval models. IEEE Trans Control Syst Technol 16(5):1083–1089

    Google Scholar 

  49. Alamo T, Bravo J, Camacho E (2005) Guaranteed state estimation by zonotopes. Automatica 41(6):1035–1043

    Article  MathSciNet  MATH  Google Scholar 

  50. Scott J, Raimondo D, Marseglia G, Braatz R (2016) Constrained zonotopes: a new tool for set-based estimation and fault detection. Automatica 69:126–136

    Article  MathSciNet  MATH  Google Scholar 

  51. Chen J, Patton R (1999) Robust model-based fault diagnosis for dynamic systems. Springer, New York, USA

    Book  MATH  Google Scholar 

  52. Hou M, Muller PC (1992) Design of observers for linear systems with unknown inputs. IEEE Trans Autom Control 37(6):871–875

    Article  MathSciNet  MATH  Google Scholar 

  53. Koenig D (2005) Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation. IEEE Trans Autom Control 50(2):212–217

    Article  MathSciNet  MATH  Google Scholar 

  54. Rotondo D, Witczak M, Puig V, Nejjari F, Pazera M (2016) Robust unknown input observer for state and fault estimation in discrete-time Takagi-Sugeno systems. Int J Syst Sci 47(14):3409–3424

    Article  MathSciNet  MATH  Google Scholar 

  55. Xu F, Tan J, Wang X, Puig V, Liang B, Yuan B (2016) A novel design of unknown input observers using set-theoretic methods for robust fault detection. In: American control conference (ACC), Boston, USA, pp 5957–5961

    Google Scholar 

  56. Xu F, Tan J, Wang X, Puig V, Liang B, Yuan B (2018) Mixed active/passive robust fault detection and isolation using set-theoretic unknown input observers. IEEE Trans Autom Sci Eng 15(2):863–871

    Article  Google Scholar 

  57. Varga A (2017) Solving fault diagnosis problems. Springer

    Google Scholar 

  58. Wan Y, Keviczky T (2019) Real-time fault-tolerant moving horizon air data estimation for the reconfigure benchmark. IEEE Trans Control Syst Technol 27(3):997–1011

    Article  Google Scholar 

  59. Wan Y, Keviczky T (2019) Real-time nonlinear moving horizon observer with pre-estimation for aircraft sensor fault detection and estimation. Int J Robust Nonlinear Control 29(16):5394–5411

    Article  MathSciNet  MATH  Google Scholar 

  60. Wan Y, Keviczky T, Verhaegen M (2018) Fault estimation filter design with guaranteed stability using Markov parameters. IEEE Trans Autom Control 63(4):1132–1139

    Article  MathSciNet  MATH  Google Scholar 

  61. Gao Z (2015) Fault estimation and fault-tolerant control for discrete-time dynamic systems. IEEE Trans Ind Electron 62(6):3874–3884

    Article  Google Scholar 

  62. Gao Z, Ding S (2007) Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica 43(5):912–920

    Article  MathSciNet  MATH  Google Scholar 

  63. Lan J, Patton R (2016) A new strategy for integration of fault estimation within fault-tolerant control. Automatica 69:48–59

    Article  MathSciNet  MATH  Google Scholar 

  64. Wang Z, Rodrigues M, Theilliol D, Shen Y (2015) Fault estimation filter design for discrete-time descriptor systems. IET Control Theory Appl 9(10):1587–1594

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang K, Jiang B, Shi P, Xu J (2015) Fault estimation observer design for discrete-time systems in finite-frequency domain. Int J Robust Nonlinear Control 25(9):1379–1398

    Article  MathSciNet  MATH  Google Scholar 

  66. Wang Z, Shi P, Lim C (2017) Robust fault estimation observer in the finite frequency domain for descriptor systems. Int J Control 1590–1599

    Google Scholar 

  67. Lopez-Estrada F, Ponsart J, Astorga-Zaragoza C, Camas-Anzueto J, Theilliol D (2015) Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: application to an anaerobic bioreactor. Int J Appl Math Comput Sci 25(2):233–244

    Article  MathSciNet  MATH  Google Scholar 

  68. Rodrigues M, Hamdi H, Theilliol D, Mechmeche C, BenHadj Braiek N (2015) Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems. Int J Robust Nonlinear Control 25(5):673–688

    Google Scholar 

  69. Shi F, Patton R (2015) Fault estimation and active fault tolerant control for linear parameter varying descriptor systems. Int J Robust Nonlinear Control 25(5):689–706

    Article  MathSciNet  MATH  Google Scholar 

  70. Wang Z, Rodrigues M, Theilliol D, Shen Y (2015) Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor systems. Int J Adapt Control Signal Process 29(2):242–258

    Article  MathSciNet  MATH  Google Scholar 

  71. Koenig D, Marx B, Varrier S (2016) Filtering and fault estimation of descriptor switched systems. Automatica 63:116–121

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252

    Article  Google Scholar 

  73. Lunze J, Steffen T (2006) Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans Autom Control 51(10):1590–1601

    Article  MathSciNet  MATH  Google Scholar 

  74. Rotondo D, Nejjari F, Puig V (2014) A virtual actuator and sensor approach for fault tolerant control of LPV systems. J Process Control 24(3):203–222

    Article  Google Scholar 

  75. Rotondo D, Puig V, Nejjari F, Romera J (2015) A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot. IEEE Trans Ind Electron 62(6):3932–3944

    Google Scholar 

  76. Rotondo D, Nejjari F, Puig V (2016) Fault tolerant control of a proton exchange membrane fuel cell using Takagi-Sugeno virtual actuators. J Process Control 45:12–29

    Article  Google Scholar 

  77. Richter J, Heemels W, van de Wouw N, Lunze J (2011) Reconfigurable control of piecewise affine systems with actuator and sensor faults: stability and tracking. Automatica 47(4):678–691

    Article  MathSciNet  MATH  Google Scholar 

  78. Rotondo D, Cristofaro A, Johansen T (2018) Fault tolerant control of uncertain dynamical systems using interval virtual actuators. Int J Robust Nonlinear Control 28(2):611–624

    Article  MathSciNet  MATH  Google Scholar 

  79. Alamo T, Bravo J, Redondo M, Camacho E (2008) A set-membership state estimation algorithm based on DC programming. Automatica 44(1):216–224

    Article  MathSciNet  MATH  Google Scholar 

  80. Combastel C (2015) Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence. Automatica 55:265–273

    Article  MathSciNet  MATH  Google Scholar 

  81. Jaulin L, Kieffer M, Didrit O, Walter E (2001) Applied interval analysis, with examples in parameter and state estimation, robust control and robotics. Springer

    Google Scholar 

  82. Puig V, Cuguero P, Quevedo J (2001) Worst-case state estimation and simulation of uncertain discrete-time systems using zonotopes. In: European control conference (ECC), pp 1691–1697

    Google Scholar 

  83. Raïssi T, Ramdani N, Candau Y (2004) Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40(10):1771–1777

    Article  MathSciNet  MATH  Google Scholar 

  84. Thabet R, Raïssi T, Combastel C, Efimov D, Zolghadri A (2014) An effective method to interval observer design for time-varying systems. Automatica 50(10):2677–2684

    Article  MathSciNet  MATH  Google Scholar 

  85. Wan Y, Puig V, Ocampo-Martinez C, Wang Y, Braatz R (2018) Probability-guaranteed set-membership state estimation for polynomially uncertain linear time-invariant systems. In: 57th IEEE conference on decision and control (IEEE-CDC), Miami, USA, pp 2291–2296

    Google Scholar 

  86. Schweppe F (1968) Recursive state estimation: unknown but bounded errors and system inputs. IEEE Trans Autom Control 13(1):22–28

    Article  Google Scholar 

  87. Efimov D, Perruquetti W, Raïssi T, Zolghadri A (2013) Interval observers for time-varying discrete-time systems. IEEE Trans Autom Control 58(12):3218–3224

    Article  MathSciNet  MATH  Google Scholar 

  88. Kalman R (1960) A new approach to linear filtering and prediction problems. ASME J Basic Eng 82(1):35–45

    Article  MathSciNet  Google Scholar 

  89. Kalman R, Bucy R (1961) New results in linear filtering and prediction theory. ASME J Basic Eng 83(1):95–108

    Article  MathSciNet  Google Scholar 

  90. Puig V (2010) Fault diagnosis and fault tolerant control using set-membership approaches: application to real case studies. Int J Appl Math Comput Sci 20(4):619–635

    Article  MathSciNet  MATH  Google Scholar 

  91. Combastel C (2003) A state bounding observer based on zonotopes. In: European control conference (ECC), Cambridge, UK, pp 2589–2594

    Google Scholar 

  92. Combastel C (2015) Merging Kalman filtering and zonotopic state bounding for robust fault detection under noisy environment. In: 9th IFAC symposium on fault detection. Supervision and safety for technical processes (SAFEPROCESS). France, Paris, pp 289–295

    Google Scholar 

  93. Blanchini F (1999) Set invariance in control. Automatica 35(11):1747–1767

    Google Scholar 

  94. Kolmanovsky I, Gilbert E (1998) Theory and computation of disturbance invariant sets for discrete-time linear systems. Math Probl Eng 4(4):317–367

    Article  MATH  Google Scholar 

  95. Limon D, Alamo T, Camacho E (2002) Stability analysis of systems with bounded additive uncertainties based on invariant sets: stability and feasibility of MPC. In: American control conference (ACC), Alaska, USA, pp 364–369

    Google Scholar 

  96. Raković S, Kerrigan E, Kouramas K, Mayne D (2005) Invariant approximations of the minimal robust positively invariant set. IEEE Trans Autom Control 50(3):406–410

    Article  MathSciNet  MATH  Google Scholar 

  97. Stoican F, Oară C, Hovd M (2015) RPI approximations of the mRPI set characterizing linear dynamics with zonotopic disturbances. In: Developments in model-based optimization and control: distributed control and industrial applications. Springer, pp 361–377

    Google Scholar 

  98. Seron M, De Doná J (2015) On robust stability and set invariance of switched linear parameter varying systems. Int J Control 88(12):2588–2597

    Article  MathSciNet  MATH  Google Scholar 

  99. Seron M, De Doná J (2016) On invariant sets and closed-loop boundedness of Lure-type nonlinear systems by LPV-embedding. Int J Robust Nonlinear Control 26(5):1092–1111

    Article  MathSciNet  MATH  Google Scholar 

  100. Blanchini F, Casagrande D, Miani S (2010) Modal and transition dwell time computation in switching systems: a set-theoretic approach. Automatica 46(9):1477–1482

    Article  MathSciNet  MATH  Google Scholar 

  101. Heidari R, Braslavsky J, Seron M, Haimovich H (2016) Ultimate bound minimisation by state feedback in discrete-time switched linear systems under arbitrary switching. Nonlinear Anal Hybrid Syst 21:84–102

    Article  MathSciNet  MATH  Google Scholar 

  102. Alamo T, Cepeda A, Fiacchini M, Camacho E (2009) Convex invariant sets for discrete-time Lur’e systems. Automatica 45(4):1066–1071

    Article  MathSciNet  MATH  Google Scholar 

  103. Bravo J, Limon D, Alamo T, Camacho E (2005) On the computation of invariant sets for constrained nonlinear systems: an interval arithmetic approach. Automatica 41(9):1583–1589

    Article  MathSciNet  MATH  Google Scholar 

  104. Fiacchini M, Alamo T, Camacho E (2010) On the computation of convex robust control invariant sets for nonlinear systems. Automatica 46(8):1334–1338

    Article  MathSciNet  MATH  Google Scholar 

  105. Fiacchini M, Alamo T, Camacho E (2012) Invariant sets computation for convex difference inclusions systems. Syst Control Lett 61(8):819–826

    Article  MathSciNet  MATH  Google Scholar 

  106. Kofman E, Haimovich H, Seron M (2007) A systematic method to obtain ultimate bounds for perturbed systems. Int J Control 80(2):167–178

    Article  MathSciNet  MATH  Google Scholar 

  107. Olaru S, De Doná J, Seron M, Stoican F (2010) Positive invariant sets for fault tolerant multisensor control schemes. Int J Control 83(12):2622–2640

    Article  MathSciNet  MATH  Google Scholar 

  108. Stoican F, Olaru S, Seron M, De Doná J (2012) Reference governor design for tracking problems with fault detection guarantees. J Process Control 22(5):829–836

    Article  Google Scholar 

  109. Seron M, De Doná J, Olaru S (2012) Fault tolerant control allowing sensor healthy-to-faulty and faulty-to-healthy transitions. IEEE Trans Autom Control 57(7):1657–1669

    Article  MathSciNet  MATH  Google Scholar 

  110. Stoican F, Olaru S (2013) Set-theoretic fault-tolerant control in multisensor systems. Wiley-ISTE

    Google Scholar 

  111. Xu F, Olaru S, Puig V, Ocampo-Martinez C, Niculescu S (2017) Sensor-fault tolerance using robust MPC with set-based state estimation and active fault isolation. Int J Robust Nonlinear Control 27(8):1260–1283

    Article  MathSciNet  MATH  Google Scholar 

  112. Mayne D, Raković S, Findeisen R, Allgöwer F (2006) Robust output feedback model predictive control of constrained linear systems. Automatica 42(7):1217–1222

    Article  MathSciNet  MATH  Google Scholar 

  113. Kofman E, Seron M, Haimovich H (2008) Control design with guaranteed ultimate bound for perturbed systems. Automatica 44(7):1815–1821

    Article  MathSciNet  MATH  Google Scholar 

  114. Raimondo D, Marseglia G, Braatz R, Scott J (2016) Closed-loop input design for guaranteed fault diagnosis using set-valued observers. Automatica 74:107–117

    Google Scholar 

  115. Scott J, Findeisen R, Braatz R, Raimondo D (2014) Input design for guaranteed fault diagnosis using zonotopes. Automatica 50(6):1580–1589

    Article  MathSciNet  MATH  Google Scholar 

  116. Marseglia G, Raimondo D (2017) Active fault diagnosis: a multi-parametric approach. Automatica 79:223–230

    Article  MathSciNet  MATH  Google Scholar 

  117. Wang Y, Olaru S, Valmorbida G, Puig V, Cembrano G (2017) Robust invariant sets and active mode detection for discrete-time uncertain descriptor systems. In: 56th IEEE conference on decision and control (IEEE-CDC), Melbourne, Australia, pp 5648–5653

    Google Scholar 

  118. Gerdin M (2004) Computation of a canonical form for linear differential-algebraic equations. Technical report, Linköping University

    Google Scholar 

  119. Iwasaki T, Hara S (2005) Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans Autom Control 50(1):41–59

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y. (2021). Introduction. In: Advances in State Estimation, Diagnosis and Control of Complex Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-52440-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52440-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52439-5

  • Online ISBN: 978-3-030-52440-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics