Skip to main content

A Review of Turbomachinery Noise: From Analytical Models to High-Fidelity Simulations

  • Chapter
  • First Online:
Fundamentals of High Lift for Future Civil Aircraft

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 145))

Abstract

To address the need for noise predictions of any rotating machine, two different approaches are presented: fast-running analytical models as pre-design tools, and numerical methods to provide detailed analysis and physical insight in the noise sources. For both, a methodology in three steps is proposed, which includes the definition of the excitation, the blade response, and the propagation of the equivalent noise source to the far-field. For all machines, the excitation can be either vortical or acoustic gusts, and the far-field propagation is provided by an acoustic analogy either in free field or in a duct. Only the second step is either an isolated blade response for low speed ventilators or a cascade response for high-speed turbomachines. Overall, analytical models are shown to provide good and fast first sound estimates at pre-design stages, and to easily separate the different noise sources. On the numerical side, for all machines, unsteady Reynolds-Averaged Navier-Stokes simulations are shown to yield accurate tonal noise of the most complex configurations. Wall-modeled Large Eddy Simulations can provide the broadband noise part over most rotating components with good overall sound power level predictions. An accurate and efficient alternative to yield both contributions at once appears to be the hybrid Lattice-Boltzmann/Very Large Eddy Simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreau, S.: Numerical and analytical predictions of low-speed fan aeroacoustics. Keynote lecture. Fan Conference (2015). https://www.researchgate.net/publication/283672206_Keynote_at_Fan2015

  2. Moreau, S., Roger, M.: Advanced noise modelling for future propulsion systems. Int. J. Aeroacoustics 17(6–8), 92–116 (2018). https://doi.org/10.1177/1475472X18789005

    Article  Google Scholar 

  3. Moreau, S.: Turbomachinery noise predictions: present and future. Acoustics 1, 92–116 (2019). https://doi.org/10.3390/acoustics1010008

    Article  Google Scholar 

  4. Wang, M., Freund, J.B., Lele, S.K.: Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483–512 (2006). https://doi.org/10.1146/annurev.fluid.38.050304.092036

    Article  MathSciNet  MATH  Google Scholar 

  5. Colin, Y., Caruelle, B., Parry, A.B.: Computational strategy for predicting CROR noise at low-speed Part III: investigation of noise radiation with the Ffowcs Williams-Hawkings analogy. In: 18th AIAA/CEAS Aeroacoustics Conference, AIAA2012-2223 paper. Colorado Springs, CO (2012). https://doi.org/10.2514/6.2012-2223

  6. Chu, B.T., Kovasznay, L.S.G.: Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3(5), 494–514 (1958). https://doi.org/10.1017/S0022112058000148

    Article  MathSciNet  Google Scholar 

  7. Wang, G., Sanjose, M., Moreau, S., Papadogiannis, D.: Noise mechanisms in a transonic high-pressure turbine stage. Int. J. Aeroacoustics 15(1–2), 144–161 (2016). https://doi.org/10.1177/1475472X16630870

    Article  Google Scholar 

  8. Moreau, S.: Direct noise computation of low-speed ring fans. Acta Acustica united with Acustica 105(1), 30–42 (2019). https://doi.org/10.3813/AAA.919285

    Article  Google Scholar 

  9. Schwarzschild, K.: Die beugung und polarisation des lichts durch einen spalt - i. Math. Ann. 55, 177–247 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  10. Amiet, R.K.: Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41(4), 407–420 (1975). https://doi.org/10.1016/S0022-460X(75)80105-2

    Article  MATH  Google Scholar 

  11. Amiet, R.K.: Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47(3), 387–393 (1976). https://doi.org/10.1016/0022-460X(76)90948-2

    Article  Google Scholar 

  12. Landhal, L.: Unsteady Transonic Flow. Pergamon Press, New York (1961)

    Google Scholar 

  13. Roger, M., Moreau, S.: Back-scattering correction and further extensions of Amiet’s trailing edge noise model. Part I: Theory. J. Sound. Vib. 286, 477–506 (2005). https://doi.org/10.1016/j.jsv.2004.10.054

    Article  Google Scholar 

  14. Moreau, S., Roger, M.: Back-scattering correction and further extensions of Amiet’s trailing-edge noise model. Part II: Application. J. Sound. Vib. 323, 397–425 (2009). https://doi.org/10.1016/j.jsv.2008.11.051

    Article  Google Scholar 

  15. Roger, M., Moreau, S.: Extensions and limitations of analytical airfoil broadband noise models. Int. J. Aeroacoustics 9(3), 273–305 (2010). https://doi.org/10.1260/1475-472X.9.3.273

    Article  Google Scholar 

  16. Roger, M., Schram, C., Moreau, S.: On vortex-airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics. J. Sound Vib. 333, 283–306 (2014). https://doi.org/10.1016/j.jsv.2013.09.012

    Article  Google Scholar 

  17. Quaglia, M., Leonard, T., Moreau, S., Roger, M.: A 3D analytical model for orthogonal blade-vortex interaction noise. J. Sound Vib. 399, 104–123 (2017). https://doi.org/10.1016/j.jsv.2017.03.023

    Article  Google Scholar 

  18. Grasso, G., Roger, M., Moreau, S.: Effect of sweep angle and of wall-pressure statistics on the free-field directivity of airfoil trailing-edge noise. In: 25th AIAA/CEAS Aeroacoustics Conference, AIAA2019-2612 paper. Delft, The Netherlands (2019). https://doi.org/10.2514/6.2019-2612

  19. Ffowcs Williams, J.E., Hawkings, D.L.: Theory relating to the noise of rotating machinery. J. Sound Vib. 10(1), 10–21 (1969). https://doi.org/10.1016/0022-460X(69)90125-4

    Article  Google Scholar 

  20. Hanson, D.B., Parzych, D.J.: Theory for noise of propellers in angular inflow with parametric studies and experimental verification. Technical report, NASA-CR-4499, Springfield (1993)

    Google Scholar 

  21. Grasso, G., Moreau, S., Christophe, J., Schram, C.: Multi-disciplinary optimization of a contra-rotating fan. Int. J. Aeroacoustics 17(6–8), 655–686 (2018). https://doi.org/10.1177/1475472X18789000

    Article  Google Scholar 

  22. Goldstein, M.E.: Aeroacoustics. Mc Graw-Hill, New York (1976)

    MATH  Google Scholar 

  23. Sanjose, M., Daroukh, M., Magnet, W., De Laborderie, J., Moreau, S., Mann, A.: Tonal fan noise prediction and validation on the ANCF configuration. Noise Control Eng. J. 63(6), 552–561 (2015). https://doi.org/10.3397/1/376349

    Article  Google Scholar 

  24. De Laborderie, J., Moreau, S.: Prediction of tonal ducted fan noise. J. Sound Vib. 372, 105–132 (2016). https://doi.org/10.1016/j.jsv.2016.02.032

    Article  Google Scholar 

  25. Sanjose, M., Moreau, S., Pestana, M., Roger, M.: Effect of Weak Outlet-Guide-Vane Heterogeneity on Rotor-Stator Tonal Noise. AIAA J. 55(10), 3440–3457 (2017). https://doi.org/10.2514/1.J055525

    Article  Google Scholar 

  26. Carolus, T., Zhu, T., Sturm, M.: A low pressure axial fan for benchmarking prediction methods for aerodynamic performance and sound. Noise Control Eng. J. 63(6), 537–545 (2015). https://doi.org/10.3397/1/376347

    Article  Google Scholar 

  27. Sturm, M., Sanjose, M., Moreau, S., Carolus, T.: Application of analytical noise models using numerical and experimental data. In: ETC11 - 11\(^{th}\) European Conference on Turbomachinery. Madrid, Spain (2015)

    Google Scholar 

  28. Sinayoko, S., Kingan, M., Agarwal, A.: Trailing edge noise theory for rotating blades in uniform flow. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 469, 1–21 (2013). https://doi.org/10.1098/rspa.2013.0065

  29. Rozenberg, Y., Roger, M., Moreau, S.: Rotating blade trailing-edge noise: experimental validation of analytical model. AIAA J. 48(5), 951–962 (2010). https://doi.org/10.2514/1.43840

    Article  Google Scholar 

  30. Fedala, D., Kouidry, C., Rey, R., Carolus, T., Schneider, M.: Incident turbulence interaction noise from an axial fan. In: 12th AIAA/CEAS Aeroacoustics Conference, AIAA2006-2477 paper. Cambridge, MA (2006). https://doi.org/10.2514/6.2006-2477

  31. Coutty, B., Moreau, S.: Aeroacoustic modeling of an automotive engine cooling module. In: 26th International Congress on Noise and Vibration, paper 525. Montreal, Canada (2019)

    Google Scholar 

  32. Carolus, T., Schneider, M., Reese, H.: Axial flow fan broad-band noise and prediction. J. Sound Vib. 300, 50–70 (2007). https://doi.org/10.1016/j.jsv.2006.07.025

    Article  Google Scholar 

  33. Sanjose, M., Moreau, S.: Fast and accurate analytical modeling of broadband noise for a low-speed fan. J. Acoust. Soc. Am. 145(3), 3103–3113 (2018). https://doi.org/10.1121/1.5038265

    Article  Google Scholar 

  34. Moreau, S., Roger, M.: Competing broadband noise mechanisms in low-speed axial fans. AIAA J. 45(1), 48–57 (2007). https://doi.org/10.2514/1.14583

    Article  Google Scholar 

  35. Moreau, S., Henner, M., Casalino, D., Gullbrand, J., Iaccarino, G., Wang, M.: Toward the prediction of low-speed fan noise. In: Proceedings of the Summer Program 2006, Center for Turbulence Research. Stanford, CA (2006)

    Google Scholar 

  36. Casalino, D., Moreau, S., Roger, M.: One, no one and one hundred thousand methods for low-speed fan noise prediction. Int. J. Aeroacoustics 9(3), 307–327 (2010). https://doi.org/10.1260/1475-472X.9.3.307

    Article  Google Scholar 

  37. Magne, S., Moreau, S., Berry, A.: Subharmonic tonal noise from backflow vortices radiated by a low-speed ring fan in uniform inlet flow. J. Acoust. Soc. Am. 137(1), 228–237 (2015). https://doi.org/10.1121/1.4904489

    Article  Google Scholar 

  38. Moreau, S., Sanjose, M.: Sub-harmonic broadband humps and tip noise in low-speed ring fans. J. Acoust. Soc. Am. 139(1), 118–127 (2016). https://doi.org/10.1121/1.4939493

    Article  Google Scholar 

  39. Lallier-Daniels, D.: Analysis of tip leakage flow noise inception in axial fans. PhD dissertation, Université de Sherbrooke, Sherbrooke, QC, Canada (1999)

    Google Scholar 

  40. Piellard, M., Coutty, B., Le Goff, V., Pérot, F., Vidal, V.: Direct aeroacoustics simulation of automotive cooling fan system: effect of upstream geometry on broadband noise. In: 20th AIAA/CEAS Aeroacoustics Conference, AIAA2014-2455 paper. Atlanta, GA (2014). https://doi.org/10.2514/6.2014-2455

  41. Lallier-Daniels, D., Piellard, M., Coutty, B., Moreau, S.: Aeroacoustic study of an axial engine cooling module using lattice-Boltzmann simulations and the Ffowcs Williams and Hawkings’ analogy. Eur. J. Mechanics B/Fluids 61, 244–254 (2017). https://doi.org/10.1016/j.euromechflu.2016.10.008

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhu, T., Lallier-Daniels, D., Sanjose, M., Moreau, S., Carolus, T.: Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans. J. Sound Vib. 417, 198–215 (2018). https://doi.org/10.1016/j.jsv.2017.11.014

    Article  Google Scholar 

  43. Zhu, T., Carolus, T.: Axial fan tip clearance noise: Experiments, Lattice-Boltzmann simulation, and mitigation measures. Int. J. Aeroacoustics 17(1–2), 159–183 (2018). https://doi.org/10.1177/1475472X17743627

    Article  Google Scholar 

  44. Sanjose, M., Moreau, S.: Direct noise prediction and control of an installed large low-speed radial fan. Eur. J. Mech. B/Fluids 61, 235–243 (2017). https://doi.org/10.1016/j.euromechflu.2016.10.004

    Article  Google Scholar 

  45. Glegg, S.A.L.: The response of a swept blade row to a three-dimensional gust. J. Sound Vib. 227(1), 29–64 (1999). https://doi.org/10.1006/jsvi.1999.2327

    Article  Google Scholar 

  46. De Laborderie, J., Moreau, S.: Evaluation of a cascade based acoustic model for fan tonal noise prediction. AIAA J. 52(12), 2877–2890 (2018). https://doi.org/10.2514/1.J053008

    Article  Google Scholar 

  47. De Laborderie, J., Blandeau, V., Node-langlois, T., Moreau, S.: Extension of a Fan Tonal Noise Cascade Model for Camber Effects. AIAA J. 53(4), 863–876 (2015). https://doi.org/10.2514/1.J053266

    Article  Google Scholar 

  48. Posson, H., Beriot, H., Moreau, S.: On the use of an analytical cascade response function to predict sound transmission through an annular cascade. J. Sound Vib. 332(15), 3706–3739 (2013). https://doi.org/10.1016/j.jsv.2013.02.013

    Article  Google Scholar 

  49. Bouley, S., François, B., Roger, M., Posson, H., Moreau, S.: On a two-dimensional mode-matching technique for sound generation and transmission in axial-flow outlet guide vanes. J. Sound Vib. 403, 190–213 (2017). https://doi.org/10.1016/j.jsv.2017.04.031

    Article  Google Scholar 

  50. Baddoo, P.J., Ayton, L.: An Analytic Solution for Gust-Cascade Interaction Noise Including Effects of Realistic Aerofoil Geometry: Inter-Blade Region. In: 24th AIAA/CEAS Aeroacoustics Conference, AIAA2018-2957 paper. Atlanta, GA (2018). https://doi.org/10.2514/6.2018-2957

  51. Moreau, S., Baddoo, P.J., Beriot, H., Roger, M., : Two-dimensional sound transmission in realistic turbomachinery cascade. In: 25th AIAA/CEAS Aeroacoustics Conference, AIAA2019-2550 paper. Delft, The Netherlands (2019). https://doi.org/10.2514/6.2019-2550

  52. Girier, L., Roger, M., Beriot, H., Laffite, A., Posson, H.: Two-dimensional sound transmission in realistic turbomachinery cascade. In: 25th AIAA/CEAS Aeroacoustics Conference, AIAA2019-2690 paper. Delft, The Netherlands (2019). https://doi.org/10.2514/6.2019-2690

  53. Posson, H., Moreau, S., Roger, M.: Broadband noise prediction of fan outlet guide vane using a cascade response function. J. Sound Vib. 330, 6153–6183 (2011). https://doi.org/10.1016/j.jsv.2011.07.040

    Article  Google Scholar 

  54. Masson, V., Posson, H., Sanjose, M., Moreau, S., Roger, M.: Fan-OGV interaction broadband noise prediction in a rigid annular duct with swirling and sheared mean flow, AIAA2016-2944 paper. Lyon, France (2016). https://doi.org/10.2514/6.2016-2944

  55. Masson, V., Mathews, J.R., Moreau, S., Posson, H., Brambley, E.J.: The impedance boundary condition for acoustics in swirling ducted flow. J. Fluid Mech. 849, 645–675 (2018). https://doi.org/10.1017/jfm.2018.429

    Article  MathSciNet  MATH  Google Scholar 

  56. Mathews, J.R., Masson, V., Moreau, S., Posson, H.: The modified Myers boundary condition for swirling flow. J. Fluid Mech. 847, 868–906 (2018). https://doi.org/10.1017/jfm.2018.326

    Article  MathSciNet  MATH  Google Scholar 

  57. Mathews, J.R., Peake, N.: The acoustic Green’s function for swirling flow with variable entropy in a lined duct. J. Sound Vib. 419, 630–653 (2018). https://doi.org/10.1016/j.jsv.2017.08.010

    Article  Google Scholar 

  58. Crevel, F., Gourdain, N., Moreau, S.: Numerical simulation of aerodynamic instabilities in a multistage high-speed high-pressure compressor on its test-rig : part 1 - Rotating stall. J. Turbomach. 136(10), 101003-1-14 (2014). https://doi.org/10.1115/1.4027967

  59. Daroukh, M., Moreau, S., Gourdain, N., Boussuge, J.F., Sensiau, C.: Tonal Noise Prediction of a Modern Turbofan Engine With Large Upstream and Downstream Distortion. J. Turbomach. 141(2), 021010-1-11 (2019). https://doi.org/10.1115/1.4042163

  60. Casalino, D., Hazir, A., Mann, A.: Turbofan Broadband Noise Prediction Using the Lattice Boltzmann Method. AIAA J. 56(2), 609–628 (2018). https://doi.org/10.2514/1.J055674

    Article  Google Scholar 

  61. Pérez Arroyo, C., Leonard, T., Sanjose, M., Moreau, S., Duchaine, F.: Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic. J. Sound Vib. 445, 64–76 (2019). https://doi.org/10.1016/j.jsv.2019.01.005

    Article  Google Scholar 

  62. Pérez Arroyo, C., Kholodov, P., Sanjose, M., Moreau, S.: CFD modeling of a realistic turbofan blade for noise prediction. Part 1: Aerodynamics. In: Proceedings of Global Power and Propulsion Society Conference, GPPS-BJ-2019-126 paper. Beijing, China (2019). https://doi.org/10.33737/gpps19-bj-126

  63. Kholodov, P., Sanjose, M., Moreau, S.: Fan Broadband Noise Computation at Transonic Regime. In: 25th AIAA/CEAS Aeroacoustics Conference, AIAA2019-2714 paper. Delft, The Netherlands (2019). https://doi.org/10.2514/6.2019-2714

  64. Gonzalez-Martino, I., Casalino, D.: Fan Tonal and Broadband Noise Simulations at Transonic Operating Conditions Using Lattice-Boltzmann Methods. In: 24th AIAA/CEAS Aeroacoustics Conference, AIAA2018-3919 paper. Atlanta, GA (2018). https://doi.org/10.2514/6.2018-3919

  65. Casalino, D., Avallone, F., Gonzalez-Martino, I., Ragni, D.: Aeroacoustic study of a wavy stator leading edge in a realistic fan/OGV stage. J. Sound Vib. 442, 138–154 (2019). https://doi.org/10.1016/j.jsv.2018.10.057

    Article  Google Scholar 

Download references

Acknowledgements

This research received several external funding over the past twenty years, but benefited mostly from the two industrial Chairs that held the author over the past five years (Industrial Chair in Aeroacoustics at Université de Sherbrooke in Canada, and Industrial Chair ADOPSYS from the Agence Nationale de la Recherche in France). This research was mostly enabled by the computational resources provided by Calcul Québec and Compute Canada. The author would like to thank E. Envia and D. Stuliff from NASA for providing the experimental data. He is also grateful to Cerfacs, Ecole Centrale de Lyon, and Dassault Systems (former Exa) for providing us the computational codes and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Moreau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreau, S. (2021). A Review of Turbomachinery Noise: From Analytical Models to High-Fidelity Simulations. In: Radespiel, R., Semaan, R. (eds) Fundamentals of High Lift for Future Civil Aircraft. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-030-52429-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52429-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52428-9

  • Online ISBN: 978-3-030-52429-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics