Skip to main content

History of Ultrasound

  • Chapter
  • First Online:
Practical Urological Ultrasound

Abstract

The rich history of ultrasound gives us an understanding of the development of a field which has advanced our diagnostic ability and treatment options. It also gives us insight into the role that ultrasound might play in the future of medicine. Intense research in the field of ultrasound began with the eighteenth-century Biologist and Physiologist Lorenzo Spallazani’s observation that non-audible sound exits. This was given further impetus by the work of the brothers Pierre and Jacques Curie on the generation of electric voltage when pressure was applied to certain crystals. In this chapter, we document a timeline of accomplishments, which has transformed theory into clinical practice and has made ultrasound a diagnostic and therapeutic reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corcoran A, Barber JR, Conner WE. Tiger Moth Jams Bat Sonar. Science. 2009;325(5938):325–7.

    Article  CAS  PubMed  Google Scholar 

  2. Dunning D, Roeder KD. Moth sounds and the insect-catching behavior of bats. Science. 1965;147:173–4.

    Article  CAS  PubMed  Google Scholar 

  3. Mackay RL. HM, Dolphin Vocalization Mechanisms. Science. 1981;212(4495):676–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ruttimann J. Frogs chat in ultrasound. Nature News, 2006, March 15.

    Google Scholar 

  5. Galambos. The avoidance of obstacles by flying bats: Spallazani’s ideas (1794) and later theories. Isis. 1942;34(2):132–40.

    Article  Google Scholar 

  6. Dijkgraaf S. Spallanzani’s unpublished experiments on the sensory basis of object perception in bats. Isis. 1960;51(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  7. Curie JCP. Sur 'electricite polaire dans cristaux hemiedres a face inclinees. C R Seances. Acad Sci. 1880;91:383.

    Google Scholar 

  8. Katzir S. The discovery of the piezoelectric effect. In: The beginnings of piezoelectricity: a study in Mundane physics: Springer Nature Switzerland AG; 2006. p. 15–64.

    Google Scholar 

  9. Curie P. Radioactive substances, especially radium. In: Nobel Lecture; 1905, June 6.

    Google Scholar 

  10. Diamantis AME, Papadimitriou A, Androutsos G. The contribution of Maria Sklodowska-Curie and Pierre Curie to nuclear and medical physics. A hundred and ten years after the discovery of radium. Hell J Nucl Med. 2008;11(1):33–8.

    PubMed  Google Scholar 

  11. Seitz F. The cosmic inventor: Reginald Aubrey Fessenden (1866-1932), vol. 89: American Philosophical Society; 1999. p. 41–6.

    Google Scholar 

  12. Chilowsky CLM, Procedes et appareils pour la production de signaux sous-marins diriges et pour la localisation a distance d'obstacles sous-marins. 1916.

    Google Scholar 

  13. Martin J. History of ultrasound. In: Resnick SRM, editor. Ultrasound in urology. Baltimore: Williams and Wilkins; 1984. p. 1–12.

    Google Scholar 

  14. Zimmerman D. Paul Langevin and the discovery of active sonar or asdic. North Mar. 2002;12(1):39–52.

    Google Scholar 

  15. Sokolov SY. The ultra-acoustic microscope. Zh Tekh Fiz. 1949;19:271.

    CAS  Google Scholar 

  16. Jagannathan J, et al. High-intensity focused ultrasound surgery of the brain: part 1--a historical perspective with modern applications. Neurosurgery. 2009;64(2):201–10; discussion 210-1.

    Article  PubMed  Google Scholar 

  17. Dussik K. Uber die Moglichkeit, hochfrequente mechanische Schwingungen als diagnostische Mittel zu verwerten. Z Ges Neurol Psych. 1941;174:153–68.

    Article  Google Scholar 

  18. Thomas AMK, Banerjee AK, Busch U. Uber die Moglichkeit, hochfrequente mechanische Schwingungen als diagnostische Mittel zu verwerten. In: Banerjee AK, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 144–61.

    Chapter  Google Scholar 

  19. Shampo MA, Kyle RA. Karl Theodore Dussik--pioneer in ultrasound. Mayo Clin Proc. 1995;70(12):1136.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas AMK, Banerjee AK, Busch U. Application of echo-ranging techniques to the determination of structure of biological tissues. In: Banerjee AK, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 162–9.

    Chapter  Google Scholar 

  21. Wild JJ, Reid JM. Application of echo-ranging techniques to the determination of structure of biological tissues. Science. 1952;115(2983):226–30.

    Article  CAS  PubMed  Google Scholar 

  22. Edler I, Hertz CH. The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. 1954. Clin Physiol Funct Imaging. 2004;24(3):118–36.

    Article  CAS  PubMed  Google Scholar 

  23. Fraser AG. Inge Edler and the origins of clinical echocardiography. Eur J Echocardiogr. 2001;2(1):3–5.

    Article  CAS  PubMed  Google Scholar 

  24. Donald I, Macvicar J, Brown TG. Investigation of abdominal masses by pulsed ultrasound. Lancet. 1958;1(7032):1188–95.

    Article  CAS  PubMed  Google Scholar 

  25. Thomas AMK, Banerjee AK, Busch U. Investigation of abdominal masses by pulsed ultrasound. In: Banerjee AK, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 213–23.

    Chapter  Google Scholar 

  26. Doppler C. Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abh Königl Böhm Ges Wiss. 1843;2:465–82.

    Google Scholar 

  27. Satomura S. Ultrasonic Doppler method for the inspection of cardiac function. J Acoust Soc Am. 1957;29:1181–5.

    Article  Google Scholar 

  28. Coman IM. Christian Andreas Doppler--the man and his legacy. Eur J Echocardiogr. 2005;6(1):7–10.

    Article  CAS  PubMed  Google Scholar 

  29. Hofmann D, Hollander HJ. Intrauterine diagnosis of hydrops fetus universalis using ultrasound. Zentralbl Gynakol. 1968;90(19):667–9.

    CAS  PubMed  Google Scholar 

  30. Woo J. A short history of the development of ultrasound in obstetrics and gynecology. Available from: http://www.ob-ultrasound.net/site_index.html.

  31. Bernstine RL, Callagan DA. Ultrasonic Doppler inspection of the fetal heart. Am J Obstet Gynecol. 1966;95(7):1001–4.

    Article  CAS  PubMed  Google Scholar 

  32. Buschmann W. On the diagnosis of carotid thrombosis. Albrecht Von Graefes Arch Ophthalmol. 1964;166:519–29.

    Article  CAS  PubMed  Google Scholar 

  33. Brinker RA, Landiss DJ, Croley TF. Detection of carotid artery bifurcation stenosis by Doppler ultrasound. Preliminary report. J Neurosurg. 1968;29(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  34. Grossman BL, Wood EH. Evaluation of cerebrovascular disease utilizing a transcutaneous Doppler technic. Radiology. 1968;90(3):586–7.

    Article  CAS  PubMed  Google Scholar 

  35. Strandness D Jr. Ultrasonic velocity determination in the diagnosis and evaluation of peripheral vascular disease. In: Symposium on ultrasound: Indiana University; 1968.

    Google Scholar 

  36. Maroon JC, Campbell RL, Dyken ML. Internal carotid artery occlusion diagnosed by Doppler ultrasound. Stroke. 1970;1(2):122–7.

    Article  CAS  PubMed  Google Scholar 

  37. Kato KIT. A new ultrasonic flowmeter that can detect flow direction. Proceedings of the 10th scientific meeting of the Japan Society of Ultrasonics in Medicine, 1966, pp. 78–79.

    Google Scholar 

  38. McLeod F. A directional doppler flowmeter. Digest of the 7th international conference on medical electronics and biological engineering, 1967, p. 213.

    Google Scholar 

  39. Bollinger A, Partsch H. Christian Doppler is 200 years young. Vasa. 2003;32(4):225–33.

    Article  PubMed  Google Scholar 

  40. Baker DWJS. Doppler echocardiograpy. In: Gramiak WR, editor. Cardiac ultrasound. St. Louis: CV Mosby; 1974. p. 24.

    Google Scholar 

  41. Maulik D, et al. Doppler color flow mapping of the fetal heart. Angiology. 1986;37(9):628–32.

    Article  CAS  PubMed  Google Scholar 

  42. Hamper UM, et al. Power Doppler imaging: clinical experience and correlation with color Doppler US and other imaging modalities. Radiographics. 1997;17(2):499–513.

    Article  CAS  PubMed  Google Scholar 

  43. Sheikh K, et al. Real-time, three-dimensional echocardiography: feasibility and initial use. Echocardiography. 1991;8(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi HOT. The ultrasonic diagnosis in the field of urology. Proc Jpn Soc Ultrasonics Med. 1963;3:7.

    Google Scholar 

  45. Watanabe H, et al. Development and application of new equipment for transrectal ultrasonography. J Clin Ultrasound. 1974;2(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  46. Holm HH, Northeved A. A transurethral ultrasonic scanner. J Urol. 1974;111(2):238–41.

    Article  CAS  PubMed  Google Scholar 

  47. Goldberg BB, Pollack HM. Differentiation of renal masses using A-mode ultrasound. J Urol. 1971;105(6):765–71.

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe H, et al. Non-invasive detection of ultrasonic Doppler signals from renal vessels. Tohoku J Exp Med. 1976;118(4):393–4.

    Article  CAS  PubMed  Google Scholar 

  49. Greene ER, et al. Noninvasive characterization of renal artery blood flow. Kidney Int. 1981;20(4):523–9.

    Article  CAS  PubMed  Google Scholar 

  50. Arima M, et al. Predictability of renal allograft prognosis during rejection crisis by ultrasonic Doppler flow technique. Urology. 1982;19(4):389–94.

    Article  CAS  PubMed  Google Scholar 

  51. Perri AJ, et al. Necrotic testicle with increased blood flow on Doppler ultrasonic examination. Urology. 1976;8(3):265–7.

    Article  CAS  PubMed  Google Scholar 

  52. Perri AJ, et al. The Doppler stethoscope and the diagnosis of the acute scrotum. J Urol. 1976;116(5):598–600.

    Article  CAS  PubMed  Google Scholar 

  53. Burgess SE, et al. Histologic changes in porcine eyes treated with high-intensity focused ultrasound. Ann Ophthalmol. 1987;19(4):133–8.

    CAS  PubMed  Google Scholar 

  54. Madersbacher S, et al. Tissue ablation in benign prostatic hyperplasia with high-intensity focused ultrasound. Eur Urol. 1993;23(Suppl 1):39–43.

    Article  PubMed  Google Scholar 

  55. Madersbacher S, et al. Transcutaneous high-intensity focused ultrasound and irradiation: an organ-preserving treatment of cancer in a solitary testis. Eur Urol. 1998;33(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  56. Chapelon JY, et al. Treatment of localised prostate cancer with transrectal high intensity focused ultrasound. Eur J Ultrasound. 1999;9(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  57. Berge V, Baco E, Karlsen SJ. A prospective study of salvage high-intensity focused ultrasound for locally radiorecurrent prostate cancer: early results. Scand J Urol Nephrol. 2010;44:223.

    Article  PubMed  Google Scholar 

  58. Kohrmann KU, et al. High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: case study and review of the literature. J Urol. 2002;167(6):2397–403.

    Article  PubMed  Google Scholar 

  59. Margreiter M, Marberger M. Focal therapy and imaging in prostate and kidney cancer: high-intensity focused ultrasound ablation of small renal tumors. J Endourol. 2010;24:745.

    Article  PubMed  Google Scholar 

  60. Wei C, et al. Prediction of postprostatectomy biochemical recurrence using quantitative ultrasound Shear wave elastography imaging. Front Oncol. 2019;9:572.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fang C, Huang DY, Sidhu PS. Elastography of focal testicular lesions: current concepts and utility. Ultrasonography. 2019;38:302.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Erdogan H, et al. Shear wave elastography evaluation of testes in patients with Varicocele. Ultrasound Q. 2019;36:64.

    Article  Google Scholar 

  63. Glybochko PV, et al. Evaluation of prostate HistoScanning as a method for targeted biopsy in routine practice. Eur Urol Focus. 2019;5(2):179–85.

    Article  PubMed  Google Scholar 

  64. Russo GMM, Scheepens W, et al. Angiogenesis in prostate cancer: onset, progression and imaging. BJU Int. 2012;110:E794–808.

    Article  PubMed  Google Scholar 

  65. Anvari A, Forsberg FSA. A primer on the physical principles of tissue harmonic imaging. Radiographics. 2015;35(7):1955.

    Article  PubMed  Google Scholar 

  66. Choudhry SGB, Charboneau JW, et al. Comparison of tissue harmonic imaging with conventional US in abdominal disease. Radiographics. 2000;20(4):1127–35.

    Article  CAS  PubMed  Google Scholar 

  67. Schmidt THC, Haage P, et al. Diagnostic accuracy of phase inversion tissue harmonic imaging versus fundamental B-mode sonography in the evaluation of focal lesions of the kidney. Am J Roentgenol. 2003;180(6):1639–47.

    Article  Google Scholar 

  68. Ozdemir HDM, Temizöz O, Genchellac H, Unlu E. Phase inversion harmonic imaging improves assessment of renal calculi: a comparison with fundamental gray-scale sonography. J Clin Ultrasound. 2008;36(1):16–9.

    Article  PubMed  Google Scholar 

  69. Sandhu GK, Angyalfi S, Dunscombe PB, Khan RF. Is tissue harmonic ultrasound imaging (THI) of the prostatic urethra and rectum superior to brightness (B) mode imaging? An observer study. Phys Med. 2014;30(6):662–8.

    Article  PubMed  Google Scholar 

  70. Trabulsi EJ, et al. Prostate Contrast Enhanced Transrectal Ultrasound (CE-TRUS) evaluation of the prostate with whole mount prostatectomy correlation. Urology. 2019;133:187.

    Article  PubMed  Google Scholar 

  71. Ntoulia A, et al. Contrast-enhanced voiding urosonography (ceVUS) with the intravesical administration of the ultrasound contrast agent Optison for vesicoureteral reflux detection in children: a prospective clinical trial. Pediatr Radiol. 2018;48(2):216–26.

    Article  PubMed  Google Scholar 

  72. Dai WB, et al. Renal masses: evaluation with contrast-enhanced ultrasound, with a special focus on the Pseudocapsule sign. Ultrasound Med Biol. 2019;45(8):1924–32.

    Article  PubMed  Google Scholar 

  73. Mannaerts CK, et al. Multiparametric ultrasound: evaluation of greyscale, shear wave elastography and contrast-enhanced ultrasound for prostate cancer detection and localization in correlation to radical prostatectomy specimens. BMC Urol. 2018;18(1):98.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Boehm K, et al. Shear Wave Elastography for Localization of Prostate Cancer Lesions and Assessment of Elasticity Thresholds: Implications for Targeted Biopsies and Active Surveillance Protocols The Journal of urology. 2015;193(3):794–800. https://dx.doi.org/10.1016/j.juro.2014.09.100.

  75. Ozawa H, et al. The future of urodynamics: non-invasive ultrasound videourodynamics. Int J Urol. 2010;17(3):241–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatia, V.P., Gilbert, B.R. (2021). History of Ultrasound. In: Fulgham, P.F., Gilbert, B.R. (eds) Practical Urological Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-030-52309-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52309-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52308-4

  • Online ISBN: 978-3-030-52309-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics