Advertisement

Graph-based Multi-Criteria Optimization for Business Processes

Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 391)

Abstract

A process usually includes several different criteria to determine the quality of its operation. Criteria represent characteristics such as robustness, accuracy, cost and time of the complete process and of its different elements. Since there is rarely a single dominant criterion, optimization needs to evaluate multiple criteria against each other to find the most appropriate process configuration.

This paper introduces a graph-based approach for the multi-criteria optimization of business processes. Based on the introduction of multi-criteria process-to-graph transitions and use-case-driven evaluation metrics, criteria graphs are created in a discrete or joint manner. Two graph evaluation types allow addressing the demands of various use cases by following an automated, priority-based iterative analysis or by analyzing in a non-strict, more comprehensive way. Originally being designed to decide on one of multiple robust process paths, the approach proves to be highly flexible for many different application areas.

Keywords

Business processes Multi-criteria-analysis Unreliable communication environments PML BPMN rBPMN KPI DAG. 

References

  1. 1.
    Van der Aalst, W.M.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013 (2013)Google Scholar
  2. 2.
    Bellman, R.: On a routing problem. Q. Appl. Math. 16(1), 87–90 (1958)CrossRefGoogle Scholar
  3. 3.
    Bocciarelli, P., D’Ambrogio, A.: A BPMN extension for modeling non functional properties of business processes. In: Proceedings of the 2011 Symposium on Theory of Modeling and Simulation, pp. 160–168. Society for Computer Simulation International (2011)Google Scholar
  4. 4.
    Bocciarelli, P., D’Ambrogio, A., Giglio, A., Paglia, E.: Simulation-based performance and reliability analysis of business processes. In: Proceedings of the 2014 Winter Simulation Conference, pp. 3012–3023. IEEE Press (2014)Google Scholar
  5. 5.
    Bocciarelli, P., D’Ambrogio, A., Giglio, A., Paglia, E.: A BPMN extension to enable the explicit modeling of task resources. In: CIISE, pp. 40–47 (2016)Google Scholar
  6. 6.
    Chhun, S., Cherifi, C., Moalla, N., Ouzrout, Y.: A multi-criteria service selection algorithm for business process requirements. arXiv preprint arXiv:1505.03998 (2015)
  7. 7.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03848-8_5CrossRefGoogle Scholar
  8. 8.
    Domingos, D., Respício, A., Martinho, R.: Using resource reliability in BPMN processes. Proc. Comput. Sci. 100, 1280–1288 (2016)CrossRefGoogle Scholar
  9. 9.
    Domingos, D., Respício, A., Martinho, R.: Reliability of IoT-aware BPMN healthcare processes. In: Virtual and Mobile Healthcare: Breakthroughs in Research and Practice, pp. 793–821. IGI Global (2020)Google Scholar
  10. 10.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-56509-4CrossRefGoogle Scholar
  11. 11.
    Even, S.: Graph Algorithms. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  12. 12.
    Gounaris, A.: Towards automated performance optimization of BPMN business processes. In: Ivanović, M., et al. (eds.) ADBIS 2016. Communications in Computer and Information Science, vol. 637, pp. 19–28. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44066-8_2CrossRefGoogle Scholar
  13. 13.
    Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations for business processes - a survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00899-3_3CrossRefGoogle Scholar
  14. 14.
    Martinho, R., Domingos, D.: Quality of information and access cost of IoT resources in BPMN processes. Proc. Technol. 16, 737–744 (2014)CrossRefGoogle Scholar
  15. 15.
    Martinho, R., Domingos, D., Respício, A.: Evaluating the reliability of ambient-assisted living business processes. In: ICEIS (2), pp. 528–536 (2016)Google Scholar
  16. 16.
    Mazzola, L., Kapahnke, P., Waibel, P., Hochreiner, C., Klusch, M.: FCE4BPMN: on-demand QoS-based optimised process model execution in the cloud. In: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 305–314. IEEE (2017)Google Scholar
  17. 17.
    Nordemann, F., Tönjes, R., Pulvermüller, E.: Resilient BPMN: robust process modeling in unreliable communication environments. In: 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD). Scitepress (2020)Google Scholar
  18. 18.
    Nordemann, F., Tönjes, R., Pulvermüller, E., Tapken, H.: A graph-based approach for process robustness in unreliable communication environments. In: 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE). Scitepress (2020)Google Scholar
  19. 19.
    Object Management Group (OMG): Business Process Model and Notation (BPMN) 2.0 Specification (2011). www.omg.org/spec/BPMN/2.0/About-BPMN. Accessed 05 Mar 2020
  20. 20.
    OMG: Object Management Group: Unified Modeling Language (UML) 2.2 Specification (2017). https://www.omg.org/spec/UML/About-UML. Accessed 09 Dec 2019
  21. 21.
    Respício, A., Domingos, D.: Reliability of BPMN business processes. Proc. Comput. Sci. 64, 643–650 (2015)CrossRefGoogle Scholar
  22. 22.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Van Der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, vol. 2. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19345-3CrossRefzbMATHGoogle Scholar
  24. 24.
    Van Der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNCS, vol. 99, pp. 169–194. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-28108-2_19CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Engineering and Computer ScienceOsnabrück University of Applied SciencesOsnabrückGermany
  2. 2.Institute of Computer ScienceUniversity of OsnabrückOsnabrückGermany

Personalised recommendations