Skip to main content

Modeling Self-organization of Adsorbate at Chemical Vapor Deposition in Accumulative Ion Plasma Devices

  • Conference paper
  • First Online:
Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 247))

  • 211 Accesses

Abstract

We perform theoretical and numerical studies of nano-structured thin-film growth at condensation in a prototype model of ion plasma device. We construct an appropriate model of plasma-condensate system, by taking into account interactions of adsorbed particles and an influence of the electrical field near substrate, inducing anisotropy in transferring of adatoms between neighbor layers in multi-layer system. We analyze an influence of the electrical field strength onto realization of first-order phase transitions. We found the range of main system parameters responsible for pattern formation with realization of separated adsorbate islands on a substrate or separated holes inside adsorbate matrix during condensation. We discuss a possibility of the main system parameters, related to strength of the electrical field near substrate, interaction energy of adsorbate and adsorption coefficient, to control dynamics of adsorbate island formation, morphology of the surface and statistical properties of the surface structures. We will demonstrate that two-dimensional structures, obtained from the derived model for the intermediate level of growing thin film, can be represented as three-dimensional pyramidal-like structures. This study gives a better understanding detail of self-organization of adatoms into separated nano-sized islands in ion plasma devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ohring M (2001) Materials science of thin films, 2nd edn. Academic press, p 794

    Google Scholar 

  2. Marchand P, Hassan IA, Parkin IP et al (2013) Dalton Trans 42:9406

    Google Scholar 

  3. Benning L, Waychunas G (2008) Nucleation, growth, and aggregation of mineral phases: mechanisms and kinetic controls. In: Brantley S, Kubicki J, White A (eds) Kinetics of water-rock interaction. Springer, New York, NY

    Google Scholar 

  4. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845

    Article  Google Scholar 

  5. Jortner J (1992) Z Phys D At Mol Clusters 24:247

    Article  Google Scholar 

  6. Chaudhuri RG, Paria S (2012) Chem Rev 112:2373

    Article  Google Scholar 

  7. Johnston RL (1998) Philos Trans R Soc London Ser A 356:211

    Google Scholar 

  8. Campbell SA (1996) The science and engineering of microelectronic fabrication. Oxford University Press, New York

    Google Scholar 

  9. Masalski J, Gluszek J, Zabrzeski J et al (1999) Thin Solid Films 349:186

    Article  ADS  Google Scholar 

  10. Vitanov P, Harizanova A, Ivanova T et al (2009) Thin Solid Films 517:6327

    Google Scholar 

  11. Chin AK (1983) J Vac Sci Technol B Microelectron Nanom Struct 1:72

    Article  ADS  Google Scholar 

  12. Echigoya J, Enoki H (1996) J Mater Sci 31:5247

    Article  ADS  Google Scholar 

  13. Gottmann J, Husmann A, Klotzbiicher T et al (1998) Surf Coatings Technol 100–101:415

    Google Scholar 

  14. Carmona-Tellez S, Guzman-Mendoza J, Aguilar-Frutis M (2008) J Appl Phys 103:34105

    Article  Google Scholar 

  15. Aguilar-frutis M, Garcia M, Falcony C et al (2001) Thin Solid Films 389:200

    Google Scholar 

  16. Dhonge BP, Mathews T, Sundari ST et al (2011) Appl Surf Sci 258:1091

    Google Scholar 

  17. Ortiz JC, Alonso A (2002) J Mater Sci Mater Electron 13:7

    Article  Google Scholar 

  18. Wu Y, Choy KL (2004) Surf Coat Technol 180–181:436

    Article  Google Scholar 

  19. Pohl K, Bartelt MC, de la Figuera J et al (1999) Nature 397:238

    Google Scholar 

  20. Mo YW, Swartzentruber BS, Kariotis R et al (1989) Phys Rev Lett 63:2393

    Google Scholar 

  21. Cirlin GE, Egorov VA, Okolov LV, Werner P (2002) Semiconductors 36:1294

    Google Scholar 

  22. Bucher JP, Hahn E, Fernandez P et al (1994) Europhys Lett 27:473

    Google Scholar 

  23. Besenbacher F, Pleth Nielsen L, Spunger PT (1997) Chapter 6. Surface alloying in het-eroepitaxial metal-on-metal growth. In: King DA, Woodruff DP (eds) The chemical physics of solid surfaces 8:207. Elsevier

    Google Scholar 

  24. Perekrestov VI, Olemskoi AI, Kosminska YuO, Mokrenko AA (2009) Phys Lett A 373:3386

    Article  ADS  Google Scholar 

  25. Kosminska YA, Mokrenko AA, Perekrestov VI (2011) Tech Phys Lett 37:538

    Article  ADS  Google Scholar 

  26. Sree Harsha KS (2006) Principles of physical vapor deposition of thin films. Elesevier

    Google Scholar 

  27. Batogkh D, Hildebrant M, Krischer F, Mikhailov A (1997) Phys Rep 288:435

    Article  ADS  Google Scholar 

  28. Hildebrand M, Mikhailov AS, Ertl G (1998) Phys Rev Lett 81:2602

    Article  ADS  Google Scholar 

  29. Hildebrand M, Mikhailov AS, Ertl G (1998) Phys Rev E 58:5483

    Article  ADS  Google Scholar 

  30. Walgraef D (2002) Phys E 15:33

    Article  Google Scholar 

  31. Kharchenko VO, Kharchenko DO, Kokhan SV et al (2012) Phys Scripta 86:055401

    Google Scholar 

  32. Kharchenko VO, Kharchenko DO (2012) Phys Rev E 86:041143

    Article  ADS  Google Scholar 

  33. Kharchenko VO, Kharchenko DO, Dvornichenko AV (2014) Surf Sci 630:158

    Article  ADS  Google Scholar 

  34. Kharchenko VO, Kharchenko DO (2015) Surf Sci 637–638:90

    Article  ADS  Google Scholar 

  35. Kharchenko VO, Kharchenko DO, Yanovsky VV (2017) Nanoscale Res Lett 12:337

    Article  ADS  Google Scholar 

  36. Dvornichenkoa AV, Kharchenkob DO, Lysenkob IO (2019) J Cryst Growth 514:1

    Article  ADS  Google Scholar 

  37. Casal SB, Wio HS, Mangioni S (2002) Physica A 311:443

    Article  ADS  Google Scholar 

  38. Mangioni SE, Wio HS (2005) Phys Rev E 71:056203

    Article  ADS  Google Scholar 

  39. Mangioni SE (2010) Physica A 389:1799

    Article  ADS  Google Scholar 

  40. Walgraef D (2003) Physica E 18:393

    Article  ADS  Google Scholar 

  41. Walgraef D (2004) Int J Quant Chem 98:248

    Article  Google Scholar 

  42. Kharchenko DO, Kharchenko VO, Lysenko IO (2011) Phys Scripta 83:045802

    Article  ADS  Google Scholar 

  43. Kharchenko DO, Kharchenko VO, Zhylenko TI et al (2013) Eur Phys J B 86(4):175

    Google Scholar 

  44. Kharchenko VO, Kharchenko DO, Dvornichenko AV (2015) Eur Phys J B 88:3

    Article  ADS  Google Scholar 

  45. Swift J, Hohenberg PC (1977) Phys Rev A 15:319

    Article  ADS  Google Scholar 

  46. Kharchenko D, Lysenko I, Kharchenko V (2010) Physica A 389:3356

    Article  ADS  Google Scholar 

  47. Elder KR, Grant M (2004) Phys Rev E 70:051605

    Article  ADS  Google Scholar 

  48. Kharchenko VO, Kharchenko DO (2012) Eur Phys J B 85:383

    Article  ADS  Google Scholar 

  49. Kharchenko DO, Kharchenko VO, Bashtova AI (2014) Radiat Eff Defects Solids 169:418

    Article  ADS  Google Scholar 

  50. Kharchenko VO, Kharchenko DO (2014) Phys Rev E 89:042133

    Article  ADS  Google Scholar 

  51. Leonhardt D, Han SM (2009) Surf Sci 603:2624

    Article  ADS  Google Scholar 

  52. Hunter KI, Held JT, Mkhoyan KA et al (2017) ACS Appl Mater Interf 9:8263

    Google Scholar 

  53. Perekrestov VI, Kosminska YO, Kornyushchenko AS et al (2013) Physica B 411:140

    Google Scholar 

  54. Kornyushchenko AS, Natalich VV, Perekrestov VI (2016) J Cryst Growth 442:68

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support of this research by the Ministry of Education and Science of Ukraine, project No. 0117U003927, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasyl O. Kharchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kharchenko, V.O., Dvornichenko, A.V. (2020). Modeling Self-organization of Adsorbate at Chemical Vapor Deposition in Accumulative Ion Plasma Devices. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications . Springer Proceedings in Physics, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-030-52268-1_8

Download citation

Publish with us

Policies and ethics