Skip to main content

The Study of Ultrasonic Treatment Influence on the Physical–Chemical Properties of TiO2/SnO2 = 1:1 Composition

  • Conference paper
  • First Online:
Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 247))

  • 216 Accesses

Abstract

The influence of ultrasonic treatment (UST) during 2 h on the physico-chemical properties of TiO2/SnO2 with a molar ratio of oxides 1:1 was investigated. It was found that in a result of activation of the composition TiO2/SnO2 = 1:1 the anisotropic destruction of SnO2 with the formation of particles with the size about 50 nm proceeds. The study of TiO2/SnO2 = 1:1 samples structure by the TEM method shows the formation of nanodispersed ring-like particles after UST. The catalytic properties of TiO2/SnO2 = 1:1 sample were tested in ethanol partial oxidation. It was established that sonoactivated sample demonstrates a high activity and selectivity to acetic aldehyde at low temperatures (T < 185°C, S = 100%) and hydrogen at 360°C with a yield equal to 41%. Obtained data show a high catalyst activity during a long time using with hydrogen productivity (10 L/kgkat × h).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nuno M, Ball RJ, Bowen CR, Kurchania R, Sharma G (2015) Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings. J Mater Sci 50:4822–4835

    Article  ADS  Google Scholar 

  2. Velazquez J, Fernandez-Gonzalez R, Díaz L, Melian EP, Rodríguez V, Núnez P (2017) Effect of reaction temperature and sacrificial agent on the photocatalytic H2-production of Pt-TiO2. J Alloy Comp 721:405–410

    Article  Google Scholar 

  3. Mahadik MA, An GW, David S, Choi SH, Cho M, Jang JS (2017) Fabrication of A/RTiO2 composite for enhanced photoelectrochemical performance: solar hydrogen generation and dye degradation. Appl Surf Sci 426:833–843

    Article  ADS  Google Scholar 

  4. Patil SM, Deshmukh SP, Dhodamani AG, More KV, Delekar SD (2017) Different strategies for modification of titanium dioxide as heterogeneous catalyst in chemical transformations. Curr Org Chem 21:821–833

    Article  Google Scholar 

  5. Dulian P, Nachit W, Jaglarz J, Kanak P, Zukowski W (2019) Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings. Opt Mat 90:264–272

    Article  Google Scholar 

  6. Ruiz AM, Cornet A, Morante JR (2004) Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO2 used for gas sensors. Sens Actuators B Chem 100:256–260

    Article  Google Scholar 

  7. Bai S, Li H, Guan Y, Jiang S (2011) The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes. Appl Surf Sci 257:6406–6409

    Article  ADS  Google Scholar 

  8. Pant HR, Park CH, Pant B, Tijing LD, Kim HY, Kim CS (2012) Synthesis, characterization, and photocatalytic properties of ZnO nano-flower containing TiO2 NPs. Ceram Int 38:2943–2950

    Article  Google Scholar 

  9. Karunakaran C, Gomathisankar P (2013) Solvothermal synthesis of CeO2–TiO2 nanocomposite for visible light photocatalytic detoxification of cyanide. ACS Sustain Chem Eng 1:1555–1563

    Article  Google Scholar 

  10. Peng L, Xie T, Lu Y, Fan H, Wang D (2010) Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys Chem Chem Phys 12:8033–8041

    Article  Google Scholar 

  11. Hunge YM (2017) Sunlight assisted photoelectrocatalytic degradation of benzoic acid using stratified WO3/TiO2 thin films. Ceram Int 43:10089–10096

    Article  Google Scholar 

  12. Hunge Y, Mahadik M, Moholkar A, Bhosale C (2017) Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrason Sonochem 35:233–242

    Article  Google Scholar 

  13. Li N, Li Y, Li W, Ji S, Jin P (2016) One-step hydrothermal synthesis of TiO2@MoO3 core–shell nanomaterial: microstructure growth mechanism and improved photochromic property. J Phys Chem C 120(6):3341–3349

    Article  Google Scholar 

  14. Moharrami F, Bagheri-Mohagheghi MM, Azimi-Juybari H (2012) Study of structural electrical optical thermoelectric and photoconductive properties of S and Al codoped SnO2 semiconductor thin films prepared by spray pyrolysis. Thin Solid Films 520:6503–6509

    Article  ADS  Google Scholar 

  15. Ponja S, Sathasivam S, Chadwick N, Kafizas A, Bawaked SM, Obaid AY, AlThabaiti S, Basahel SN, Parkin IP, Carmalt CJ (2013) Aerosol assisted chemical vapour deposition of hydrophobic TiO2–SnO2 composite film with novel microstructure and enhanced photocatalytic activity. J Mater Chem A 1:6271–6278

    Article  Google Scholar 

  16. Hunge Y, Mahadik M, Moholkar A, Bhosale C (2017) Photoelectrocatalytic degradation of phthalic acid using spray deposited stratified WO3/ZnO thin films under sunlight illumination. Appl Surf Sci 420:764–772

    Article  ADS  Google Scholar 

  17. YM Hunge (2017) Photoelectrocatalytic degradation of 4-chlorophenol using nanostructured α-Fe2O3 thin films under sunlight illumination. J Mater Sci Mater Electron 1–8

    Google Scholar 

  18. Vanalakar SA, Patil VL, Harale NS, Vhanalakar SA, Gang MG, Kim JY, Patil PS, Kim JH (2011) Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens Actuators B Chem 221:1195–1201

    Article  Google Scholar 

  19. Patil SM, Dhodamani AG, Vanalakar SA, Deshmukh SP, Delekar SD (2018) Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing. J. Phy Chem Solids 115:127–136

    Article  ADS  Google Scholar 

  20. Sheng J, Tong H, Xu H, Tang C (2016) Preparation and photocatalytic activity of SnO2@TiO2 core–shell composites modified by Ag. Catal Surv Asia 20:167–172

    Article  Google Scholar 

  21. Kutuzova AS, Dontsova TA (2019) Characterization and properties of TiO2–SnO2 nanocomposites obtained by hydrolysis method. Appl Nanosci 9(5):873–880

    Article  ADS  Google Scholar 

  22. Scarisoreanu M, Fleaca C, Morjan I, Niculescu A-M, Luculescu C, Dutu E, Ilie A, Morjan I, Florescu LG, Vasile E, Fort CI (2017) High photoactive TiO2/SnO2 nanocomposites prepared by laser pyrolysis. Appl Surf Sci 418(1):491–498, Part B

    Article  ADS  Google Scholar 

  23. Guo H, Zhang H, Yang J, Chen H, Li Y, Wang L, Niu X (2018) TiO2/SnO2 Nanocomposites as electron transporting layer for efficiency enhancement in planar CH3NH3PbI3-based perovskite solar cells. ACS Appl Energ Mater 1(12):6936–6944

    Article  Google Scholar 

  24. Huang M, Yu J, Li B, Deng C, Wang L, Wu W, Dong L, Zhang F, Fan M (2015) Intergrowth and coexistence effects of TiO2–SnO2 nanocomposite with excellent photocatalytic activity. J Alloy Compd 629:55–61

    Article  Google Scholar 

  25. Zazhigalov VA, Sachuk OV, Diyuk OA, Starchevskyy VL, Kolotilov SV, Sawlowicz Z, Shcherbakov SM, Zakutevskyy OI (2018) The ultrasonic treatment as a promising method of nanosized oxide CeO2-MoO3 composites preparation. Nanochem Biotechnol Nanomater Appl 214:297–309

    Google Scholar 

  26. Zazhigalov VA, Diyuk OA, Sachuk OV, Diyuk NV, Starchevsky VL, Sawlowicz Z IV, Bacherikova SM Shcherbakov (2019) The effect of mechanochemical and ultrasonic treatments on the properties of composition CeO2-MoO3 = 1:1. Nanochem Biotechnol Nanomater Appl 221:109–123

    Google Scholar 

  27. Rumyantseva MN (2009) Chemical modification and sensory properties of nanocrystalline tin dioxide: author disscussion for the science degree doctor chemical sciences. Moscow, pp 46

    Google Scholar 

  28. Ivanov VV, Sidorak IA, Shubin AA, Denisova LT (2010) Synthesis of SnO2 powders by decomposition of thermally unstable compounds. J. Siberian Federal University Eng Technol 2(3):189–213

    Google Scholar 

  29. León A, Reuquen P, Garín C, Segura R, Vargas P, Zapata P, Orihuela PA 2017 FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci 7(49). https://doi.org/10.3390/app7010049

  30. Bahade ST, Lanje AS, Sharma SJ (2017) Synthesis of SnO2 thin film by sol-gel spin coating technique for optical and ethanol gas sensing application. IJSRST 3(7):567–575

    Google Scholar 

  31. Zazhigalov VA, Wieczorek-Ciurowa K (2014) Mechanochemiczna aktywacja katalizatorów wanadowych. Krakow: Wydawnictwo PK, pp 454

    Google Scholar 

  32. Ayeshamariam A (2013) Synthesis, structural and optical characterizations of SnO2 nanoparticles. J Photon Spintron 2(2):4–8

    Google Scholar 

  33. Nithiyanantham U, Ramadoss A, Kundu S (2016) Synthesis and characterization of DNA fenced self-assembled SnO2 nano-assemblies for supercapacitor applications. Dalton Trans 45:3506–3521

    Article  Google Scholar 

  34. Sheng P-Y, Yee A, Bowmaker GA, Idriss H (2002) H2 Production from ethanol over Rh–Pt/CeO2 catalysts: the role of Rh for the efficient dissociation of the carbon–carbon bond. J Catal 208:393–403

    Article  Google Scholar 

  35. Pirez C, Fang W, Capron M, Paul S, Jobic H, Dumeignil F, Jalowiecki-Duhamel L (2016) Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst. Appl Catal A V 518:78–86

    Article  Google Scholar 

  36. Mattos LV, Noronha FB (2005) Hydrogen production for fuel cell applications by ethanol partial oxidation on Pt/CeO2 catalysts: the effect of the reaction conditions and reaction mechanism. J Catal 233:453–463

    Article  Google Scholar 

  37. Cai W, Wang F, Zhan E, Van Veen AC, Mirodatos C, Shen W (2008) Hydrogen production from ethanol over Ir/CeO2 catalysts: a comparative study of steam reforming partial oxidation and oxidative steam reforming. J Catal V 257:96–107

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by NASU Program “New functional substances and materials of chemical production” (project 13–19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zazhigalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sachuk, O.V., Zazhigalov, V.A., Diyuk, O.A., Starchevskyy, V.L., Dulian, P., Kurmach, M.M. (2020). The Study of Ultrasonic Treatment Influence on the Physical–Chemical Properties of TiO2/SnO2 = 1:1 Composition. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications . Springer Proceedings in Physics, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-030-52268-1_16

Download citation

Publish with us

Policies and ethics