Skip to main content

OCR Post Processing Using Support Vector Machines

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1229))

Included in the following conference series:


In this paper, we introduce a set of detailed experiment using Support Vector Machines (SVM) to try and improve accuracy selecting the correct candidate word to correct OCR generated errors. We use our alignment algorithm to create a one-to-one correspondence between the OCR text and the clean version of the TREC-5 data set (Confusion Track). We then extract five features from the candidates suggested by the Google web 1T corpus and use them to train and test our SVM model that will then generalize into the rest of the unseen text. We then improve on our initial results using a polynomial kernel, feature standardization with minmax normalization, and class balancing with SMOTE. Finally, we analyze the errors and suggest on future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Fonseca Cacho, J.R., Taghva, K., Alvarez, D.: Using the Google Web 1T 5-gram corpus for OCR error correction. In: 16th International Conference on Information Technology-New Generations (ITNG 2019), pp. 505–511. Springer (2019)

    Google Scholar 

  2. Brants, T., Franz, A.: Web 1T 5-gram version 1 (2006)

    Google Scholar 

  3. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys. Doklady 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  4. Fonseca Cacho, J.R., Taghva, K.: Aligning ground truth text with OCR degraded text. In: Intelligent Computing-Proceedings of the Computing Conference, pp. 815–833. Springer (2019)

    Google Scholar 

  5. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011).

    Article  Google Scholar 

  6. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  7. Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al.: A practical guide to support vector classification (2003)

    Google Scholar 

  8. Taghva, K., Stofsky, E.: OCRSpell: an interactive spelling correction system for OCR errors in text. Int. J. Doc. Anal. Recogn. 3(3), 125–137 (2001)

    Article  Google Scholar 

  9. Taghva, K., Nartker, T., Borsack, J.: Information access in the presence of OCR errors. In: Proceedings of the 1st ACM workshop on Hardcopy Document Processing, pp. 1–8. ACM (2004)

    Google Scholar 

  10. Kantor, P.B., Voorhees, E.M.: The TREC-5 confusion track: comparing retrieval methods for scanned text. Inf. Retrieval 2(2–3), 165–176 (2000)

    Article  Google Scholar 

  11. TREC-5 confusion track. Accessed 10 Oct 2017

  12. Drakos, G.: Support vector machine vs logistic regression. Accessed 21 June 2019

  13. Fonseca Cacho, J.R.: Improving OCR post processing with machine learning tools. Ph.D. dissertation, University of Nevada, Las Vegas (2019)

    Google Scholar 

  14. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  15. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017).

    Google Scholar 

  16. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  17. Devi, D., Purkayastha, B., et al.: Redundancy-driven modified Tomek-link based undersampling: a solution to class imbalance. Pattern Recogn. Lett. 93, 3–12 (2017)

    Article  Google Scholar 

  18. Fonseca Cacho, J.R., Taghva, K.: Reproducible research in document analysis and recognition. In: Information Technology-New Generations, pp. 389–395. Springer (2018)

    Google Scholar 

  19. Fonseca Cacho, J.R., Taghva, K.: The state of reproducible research in computer science. In: Latifi, S. (ed.) 17th International Conference on Information Technology-New Generations (ITNG 2020). Advances in Intelligent Systems and Computing, vol. 1134. Springer, Cham (2020).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jorge Ramón Fonseca Cacho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fonseca Cacho, J.R., Taghva, K. (2020). OCR Post Processing Using Support Vector Machines. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1229. Springer, Cham.

Download citation

Publish with us

Policies and ethics