Skip to main content

OCR Post Processing Using Support Vector Machines

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1229)

Abstract

In this paper, we introduce a set of detailed experiment using Support Vector Machines (SVM) to try and improve accuracy selecting the correct candidate word to correct OCR generated errors. We use our alignment algorithm to create a one-to-one correspondence between the OCR text and the clean version of the TREC-5 data set (Confusion Track). We then extract five features from the candidates suggested by the Google web 1T corpus and use them to train and test our SVM model that will then generalize into the rest of the unseen text. We then improve on our initial results using a polynomial kernel, feature standardization with minmax normalization, and class balancing with SMOTE. Finally, we analyze the errors and suggest on future improvements.

Keywords

  • OCR
  • Support Vector Machines
  • SVM
  • OCR Post Processing
  • SMOTE

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   160.49
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   219.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fonseca Cacho, J.R., Taghva, K., Alvarez, D.: Using the Google Web 1T 5-gram corpus for OCR error correction. In: 16th International Conference on Information Technology-New Generations (ITNG 2019), pp. 505–511. Springer (2019)

    Google Scholar 

  2. Brants, T., Franz, A.: Web 1T 5-gram version 1 (2006)

    Google Scholar 

  3. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys. Doklady 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  4. Fonseca Cacho, J.R., Taghva, K.: Aligning ground truth text with OCR degraded text. In: Intelligent Computing-Proceedings of the Computing Conference, pp. 815–833. Springer (2019)

    Google Scholar 

  5. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm

    CrossRef  Google Scholar 

  6. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  7. Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al.: A practical guide to support vector classification (2003)

    Google Scholar 

  8. Taghva, K., Stofsky, E.: OCRSpell: an interactive spelling correction system for OCR errors in text. Int. J. Doc. Anal. Recogn. 3(3), 125–137 (2001)

    CrossRef  Google Scholar 

  9. Taghva, K., Nartker, T., Borsack, J.: Information access in the presence of OCR errors. In: Proceedings of the 1st ACM workshop on Hardcopy Document Processing, pp. 1–8. ACM (2004)

    Google Scholar 

  10. Kantor, P.B., Voorhees, E.M.: The TREC-5 confusion track: comparing retrieval methods for scanned text. Inf. Retrieval 2(2–3), 165–176 (2000)

    CrossRef  Google Scholar 

  11. TREC-5 confusion track. https://trec.nist.gov/data/t5_confusion.html. Accessed 10 Oct 2017

  12. Drakos, G.: Support vector machine vs logistic regression. https://towardsdatascience.com/support-vector-machine-vs-logistic-regression-94cc2975433f. Accessed 21 June 2019

  13. Fonseca Cacho, J.R.: Improving OCR post processing with machine learning tools. Ph.D. dissertation, University of Nevada, Las Vegas (2019)

    Google Scholar 

  14. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    CrossRef  Google Scholar 

  15. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017). http://jmlr.org/papers/v18/16-365.html

    Google Scholar 

  16. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  17. Devi, D., Purkayastha, B., et al.: Redundancy-driven modified Tomek-link based undersampling: a solution to class imbalance. Pattern Recogn. Lett. 93, 3–12 (2017)

    CrossRef  Google Scholar 

  18. Fonseca Cacho, J.R., Taghva, K.: Reproducible research in document analysis and recognition. In: Information Technology-New Generations, pp. 389–395. Springer (2018)

    Google Scholar 

  19. Fonseca Cacho, J.R., Taghva, K.: The state of reproducible research in computer science. In: Latifi, S. (ed.) 17th International Conference on Information Technology-New Generations (ITNG 2020). Advances in Intelligent Systems and Computing, vol. 1134. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43020-7_68

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ramón Fonseca Cacho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fonseca Cacho, J.R., Taghva, K. (2020). OCR Post Processing Using Support Vector Machines. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1229. Springer, Cham. https://doi.org/10.1007/978-3-030-52246-9_51

Download citation