Skip to main content

Blood to Molecules: The Fossil Record of Blood and Its Constituents

  • Chapter
  • First Online:
The Evolution and Fossil Record of Parasitism

Part of the book series: Topics in Geobiology ((TGBI,volume 50))

Abstract

Contrary to prevalent assumptions, blood—the ultimate “soft tissue”—has a substantial fossil record. Although initial reports of blood remnants from the Holocene were deservedly controversial—and reports of blood cells and proteins in Cretaceous therapods remain controversial today—there is currently good evidence for original blood components in fossils more than 500 million years old. In this review, our knowledge of the fossil record of blood and its cellular and molecular constituents is documented and appraised. Cellular components have been described from both amber (e.g., erythrocytes and protozoan parasites such as Plasmodium and Leishmania) and mineralized bone tissue (erythrocytes and capillary vessels). Although small molecules such as hemoglobin-derived heme and hemocyanin-derived copper are documented in the fossil record, sequenceable polymeric molecules proteins and DNA have the greatest potential for informing us of ancient behavior and physiology—examples include the functionality of mammoth hemoglobin and the disease states of pharaohs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abelson PH (1954) Amino acids in fossils. Science 119(3096):A576

    Google Scholar 

  • Abelson PH (1957) Some aspects of paleo-biochemistry. Ann N Y Acad Sci 69(2):276–285

    Article  CAS  Google Scholar 

  • Allard MW, Young D, Huyen Y (1995) Detecting dinosaur DNA. Science 268:1192

    Article  CAS  Google Scholar 

  • Allentoft ME, Collins M, Harker D, Haile J, Oskam CL, Hale ML, Campos PF, Samaniego JA, Gilbert MT, Willerslev E, Zhang G (2012) The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc R Soc Lond B Biol Sci 279:4724–4733

    CAS  Google Scholar 

  • Altelaar AM, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14(1):35–48

    Article  CAS  Google Scholar 

  • Anderson KE, Waite JH (2000) Immunolocalization of Dpfp1, a byssal protein of the zebra mussel Dreissena polymorpha. J Exp Biol 203(20):3065–3076

    Article  CAS  Google Scholar 

  • Armitage MH (2016) Preservation of Triceratops horridus tissue cells from the Hell Creek formation, MT. Microscopy Today 24:18–23

    Article  Google Scholar 

  • Armitage MH, Anderson KL (2013) Soft sheets of fibrillar bone from a fossil of the supraorbital horn of the dinosaur Triceratops horridus. Acta Histochem 115(6):603–608

    Article  Google Scholar 

  • Ascenzi A, Brunori M, Citro G, Zito R (1985) Immunological detection of hemoglobin in bones of ancient Roman times and of Iron and Eneolithic ages. Proc Natl Acad Sci 82(21):7170–7172

    Article  CAS  Google Scholar 

  • Aufderheide AC, Salo W, Madden M, Streitz J, Buikstra J, Guhl F, Arriaza B, Renier C, Wittmers LE, Fornaciari G, Allison M (2004) A 9000-year record of Chagas' disease. Proc Natl Acad Sci 101(7):2034–2039

    Article  CAS  Google Scholar 

  • Austin JJ, Ross AJ, Smith AB, Fortey RA, Thomas RH (1997) Problems of reproducibility – does geologically ancient DNA survive in amber-preserved insects? Proc R Soc Lond B Biol Sci 264(1381):467–474

    Google Scholar 

  • Azar D, Nel A (2012) Evolution of hematophagy in “non-biting midges” (Diptera: Chironomidae). Terrestr Arthropod Rev 5(1):15–34

    Article  Google Scholar 

  • Baker J, Ho MF, Pelecanos A, Gatton M, Chen N, Abdullah S, Albertini A, Ariey F, Barnwell J, Bell D, Cunningham J (2010) Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests. Malar J 9(1):129

    Article  Google Scholar 

  • Barbieri R, Mekni R, Levasseur A, Chabrière E, Signoli M, Tzortzis S, Aboudharam G, Drancourt M (2017) Paleoproteomics of the dental pulp: the plague paradigm. PLoS One 12(7):e0180552

    Article  Google Scholar 

  • Bardack D (1991) First fossil hagfish (Myxinoidea): a record from the Pennsylvanian of Illinois. Science 254(5032):701–704

    Article  CAS  Google Scholar 

  • Bergwerff AA, Van Dam GJ, Rotmans JP, Deelder AM, Kamerling JP, Vliegenthart JF (1994) The immunologically reactive part of immunopurified circulating anodic antigen from Schistosoma mansoni is a threonine-linked polysaccharide consisting of--> 6-(beta-D-GlcpA-(1--> 3))-beta-D-GalpNAc-1--> repeating units. J Biol Chem 269(50):31510–31517

    Article  CAS  Google Scholar 

  • Bern M, Phinney BS, Goldberg D (2009) Reanalysis of Tyrannosaurus rex mass spectra. J Proteome Res 8(9):4328–4332

    Article  CAS  Google Scholar 

  • Bertazzo S, Maidment SC, Kallepitis C, Fearn S, Stevens MM, Xie HN (2015) Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 6:7352

    Article  Google Scholar 

  • Bianucci R, Mattutino G, Lallo R, Charlier P, Jouin-Spriet H, Peluso A, Higham T, Torre C, Massa ER (2008) Immunological evidence of Plasmodium falciparum infection in an Egyptian child mummy from the Early Dynastic Period. J Archaeol Sci 35(7):1880–1885

    Article  Google Scholar 

  • Blum LJ, Esperanca P, Rocquefelte S (2006) A new high-performance reagent and procedure for latent bloodstain detection based on luminol chemiluminescence. J Can Soc Forensic Sci 39(3):81–99

    Article  CAS  Google Scholar 

  • Borja C, García-Pacheco M, Olivares EG, Scheuenstuhl G, Lowenstein JM (1997) Immunospecificity of albumin detected in 1.6 million-year-old fossils from Venta Micena in Orce, Granada, Spain. Am J Phys Anthropol 103(4):433–441

    Article  CAS  Google Scholar 

  • Borkent A, Grimaldi DA (2016) The Cretaceous fossil Burmaculex antiquus confirmed as the earliest known lineage of mosquitoes (Diptera: Culicidae). Zootaxa 4079(4):457–466

    Article  Google Scholar 

  • Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, McPhee JB, DeWitte SN, Meyer M, Schmedes S, Wood J (2011) A draft genome of Yersinia pestis from victims of the Black Death. Nature 478(7370):506–510

    Article  CAS  Google Scholar 

  • Boyd WC, Boyd LG (1934) An attempt to determine the blood groups of mummies. Proc Soc Exp Biol Med 31(6):671–672

    Article  Google Scholar 

  • Brandt E, Wiechmann I, Grupe G (2002) How reliable are immunological tools for the detection of ancient proteins in fossil bones? Int J Osteoarchaeol 12(5):3071–3076

    Article  Google Scholar 

  • Briggs DE (1999) Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philos T R Soc B 354(1379):7–17

    Article  CAS  Google Scholar 

  • Briggs DE (2013) A mosquito’s last supper reminds us not to underestimate the fossil record. Proc Natl Acad Sci 110(46):18353–18354

    Article  CAS  Google Scholar 

  • Briggs DE, Summons RE (2014) Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36(5):482–490

    Article  CAS  Google Scholar 

  • Briggs DEG, Evershed RP, Lockheart MJ (2000) The biomolecular paleontology of continental fossils. In: Erwin DH, Wing SL (ed) Deep time: Paleobiology’s perspective. Paleobiology 26(suppl. 4):169–193

    Article  Google Scholar 

  • Brown DR (2010) Metalloproteins and neuronal death. Metallomics 2(3):186–194

    Article  CAS  Google Scholar 

  • Brundin M, Figdor D, Sundqvist G, Sjögren U (2013) DNA binding to hydroxyapatite: a potential mechanism for preservation of microbial DNA. J Endod 39(2):211–216

    Article  Google Scholar 

  • Brundin M, Figdor D, Johansson A, Sjögren U (2014) Preservation of bacterial DNA by human dentin. J Endod 40(2):241–245

    Article  Google Scholar 

  • Buckley M, Collins MJ (2011) Collagen survival and its use for species identification in Holocene-lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua 1(1):e1

    Article  Google Scholar 

  • Buckley M, Walker A, Ho SY, Yang Y, Smith C, Ashton P, Oates JT, Cappellini E, Koon H, Penkman K, Elsworth B (2008) Comment on ‘protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 319:33

    Article  CAS  Google Scholar 

  • Buckley M, Warwood S, van Dongen B, Kitchener AC, Manning PL (2017) A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination. Proc R Soc B 284:20170544

    Article  Google Scholar 

  • Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26(4):207–214

    Article  CAS  Google Scholar 

  • Cadena E (2016) Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany. PeerJ 4:e1618

    Article  Google Scholar 

  • Cadena EA (2020) In situ SEM/EDS compositional characterization of osteocytes and blood vessels in fossil and extant turtles on untreated bone surfaces; different preservational pathways microns away. PeerJ 8:e9833

    Google Scholar 

  • Campbell KL, Roberts JE, Watson LN, Stetefeld J, Sloan AM, Signore AV, Howatt JW, Tame JR, Rohland N, Shen TJ, Austin JJ (2010) Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance. Nat Genet 42(6):536–540

    Article  CAS  Google Scholar 

  • Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RA, Stafford TW Jr, Holen SR, Collins MJ, Orlando L, Willerslev E, Gilbert MTP, Olsen JV (2012) Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J Proteome Res 11(2):9172–9176

    Article  Google Scholar 

  • Cattaneo C, Gelsthorpe K, Phillips P, Sokol RJ (1992) Detection of blood proteins in ancient human bone using ELISA: a comparative study of the survival of IgG and albumin. Int J Osteoarchaeol 2(2):103–107

    Article  Google Scholar 

  • Cattaneo C, Gelsthorpe K, Phillips P, Sokol RJ (1993) Blood residues on stone tools: indoor and outdoor experiments. World Archaeol 25(1):29–43

    Article  CAS  Google Scholar 

  • Cattaneo C, Gelsthorpe K, Phillips P, Waldron T, Booth JR, Sokol RJ (1994) Immunological diagnosis of multiple myeloma in a medieval bone. Int J Osteoarchaeol 4(1):1–2

    Article  Google Scholar 

  • Chin K, Eberth DA, Schweitzer MH, Rando TA, Sloboda WJ, Horner JR (2003) Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. PALAIOS 18(3):286–294

    Article  Google Scholar 

  • Cleland TP, Schroeter ER, Zamdborg L, Zheng W, Lee JE, Tran JC, Bern M, Duncan MB, Lebleu VS, Ahlf DR, Thomas PM (2015) Mass spectrometry and antibody-based characterization of blood vessels from Brachylophosaurus canadensis. J Proteome Res 14(12):525–5262

    Article  Google Scholar 

  • Cody GD, Gupta NS, Briggs DE, Kilcoyne AL, Summons RE, Kenig F, Plotnick RE, Scott AC (2011) Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology 39(3):255–258

    Article  CAS  Google Scholar 

  • Collins MJ, Gernaey AM, Nielsen-Marsh CM, Vermeer C, Westbroek P (2000) Slow rates of degradation of osteocalcin: Green light for fossil bone protein? Geology 28(12):1139–1142

    Article  CAS  Google Scholar 

  • Corthals A, Koller A, Martin DW, Rieger R, Chen EI, Bernaski M, Recagno G, Dávalos LM (2012) Detecting the immune system response of a 500 year-old Inca mummy. PLoS One 7(7):e41244

    Article  CAS  Google Scholar 

  • Craig OE, Collins MJ (2002) The removal of protein from mineral surfaces: implications for residue analysis of archaeological materials. J Archaeol Sci 29(10):1077–1082

    Article  Google Scholar 

  • Damgaard PB, Margaryan A, Schroeder H, Orlando L, Willerslev E, Allentoft ME (2015) Improving access to endogenous DNA in ancient bones and teeth. Sci Rep 5:11184

    Article  Google Scholar 

  • David MM (1997) Small spheres in fossil bones: blood corpuscles or diagenetic products? Palaeontology 40(3):619–624

    Google Scholar 

  • David AR (2000) 5000 years of schistosomiasis in Egypt. Chungará (Arica) 32(1):133–135

    Article  Google Scholar 

  • Davies KJ, Lin S, Pacifici RE (1987) Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J Biol Chem 262(20):9914–9920

    Article  CAS  Google Scholar 

  • De Baets K, Littlewood (2015) The importance of fossils in understanding the evolution of parasites and their vectors. Adv Parasitol 90:1–51

    Article  Google Scholar 

  • De Jong EW, Westbroek P, Westbroek JF, Bruning JW (1974) Preservation of antigenic properties of macromolecules over 70 Myr. Nature 252(5478):63–64

    Article  Google Scholar 

  • Deelder AM, Miller RL, De Jonge N, Krijger FW (1990) Detection of schistosome antigen in mummies. Lancet 335(8691):724–725

    Article  CAS  Google Scholar 

  • Demarchi B, Hall S, Roncal-Herrero T, Freeman CL, Woolley J, Crisp MK, Wilson J, Fotakis A, Fischer R, Kessler BM, Jersie-Christensen RR (2016) Protein sequences bound to mineral surfaces persist into deep time. elife 5:e17092

    Article  Google Scholar 

  • Deniro MJ, Weiner S (1988) Organic matter within crystalline aggregates of hydroxyapatite: a new substrate for stable isotopic and possibly other biogeochemical analyses of bone. Geochim Cosmochim Acta 52(10):2415–2423

    Article  CAS  Google Scholar 

  • Dittmar K (2009) Old parasites for a new world: the future of paleoparasitological research: A review. J Parasitol 95(2):365–371

    Article  Google Scholar 

  • Dittmar K, Mamat U, Whiting M, Goldmann T, Reinhard K, Guillen S (2003) Techniques of DNA-studies on prehispanic ectoparasites (Pulex sp., Pulicidae, Siphonaptera) from animal mummies of the Chiribaya culture, southern Peru. Memorias do Instituto Oswaldo Cruz 98:53–59

    Article  CAS  Google Scholar 

  • Dobinski W (2011) Permafrost. Earth Sci Rev 108(3):158–169

    Article  Google Scholar 

  • Eglinton TI, Eglinton G (2008) Molecular proxies for paleoclimatology. Earth Planet Sci Lett 275(1):1–6

    Article  CAS  Google Scholar 

  • Ehrlich H, Rigby JK, Botting JP, Tsurkan MV, Werner C, Schwille P, Petrášek Z, Pisera A, Simon P, Sivkov VN, Vyalikh DV (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497

    Article  CAS  Google Scholar 

  • Ezra HC, Cook SF (1959) Histology of mammoth bone. Science 129(3347):465–466

    Article  CAS  Google Scholar 

  • Farrah T, Deutsch EW, Omenn GS, Campbell DS, Sun Z, Bletz JA, Mallick P, Katz JE, Malmström J, Ossola R, Watts JD (2011) A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol Cell Proteomics 10:M110.006353

    Article  Google Scholar 

  • Fernandes A, Iñiguez AM, Lima VS, Souza SM, Ferreira LF, Vicente AC, Jansen AM (2008) Pre-Columbian Chagas disease in Brazil: Trypanosoma cruzi in the archaeological remains of a human in Peruaçu Valley, Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 103(5):514–516

    Article  Google Scholar 

  • Ferreira LF, Britto C, Cardoso MA, Fernandes O, Reinhard K, Araújo A (2000) Paleoparasitology of Chagas disease revealed by infected tissues from Chilean mummies. Acta Trop 75(1):79–84

    Article  CAS  Google Scholar 

  • Ferreira A, Marguti I, Bechmann I, Jeney V, Chora Â, Palha NR, Rebelo S, Henri A, Beuzard Y, Soares MP (2011) Sickle hemoglobin confers tolerance to Plasmodium infection. Cell 145(3):398–409

    Article  CAS  Google Scholar 

  • Ferrón CC, Villar SJ, Soto FM, Navarrete JL, Hernández V (2014) Applications of Raman and infrared spectroscopies to the research and conservation of subterranean cultural heritage. In: Saiz-Jimenez C (ed) The conservation of subterranean cultural heritage. CRC Press, Boca Raton

    Google Scholar 

  • Fikentscher R (1933) Koproporphyrin im tertiären Krokodilkot. Zool Anz 103:289–295

    CAS  Google Scholar 

  • Fisher DC, Tikhonov AN, Kosintsev PA, Rountrey AN, Buigues B, van der Plicht J (2012) Anatomy, death, and preservation of a woolly mammoth (Mammuthus primigenius) calf, Yamal Peninsula, Northwest Siberia. Quat Int 255:94–105

    Article  Google Scholar 

  • Fluorissant Fossil Database. (2017). https://planning.nps.gov/flfo/, Accessed 14 Nov 2017

  • Fornaciari G, Castagna M, Viacava P, Tognetti A, Bevilacqua G, Segura E (1992) Chagas’ disease in Peruvian Inca mummy. Lancet 339(8785):128–129

    Article  CAS  Google Scholar 

  • Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM, Bondarev AA, Johnson PL, Aximu-Petri A, Prüfer K, de Filippo C, Meyer M, Zwyns N, Salazar-Garcia DC, Kuzmin YV, Keates SG, Kosintsev PA, Razhev DI, Richards MP, Peristov NV, Lachmann M, Douka K, Higham TFG, Slatkin M, Hublin J-J, Reich D, Kelso J, Viola TB, Pääbo S (2014) Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514(7523):445–449

    Article  CAS  Google Scholar 

  • Gaines RG, Lombardo AJ, Holzer IO, Caron J-B (2019) The limits of Burgess Shale-type preservation: assessing the evidence for preservation of the blood protein hemocyanin in the Burgess Shale. PALAIOS 34:291–299

    Article  Google Scholar 

  • Gallart-Palau X, Serra A, Sze AK (2015) Uncovering neurodegenerative protein modifications via proteomic profiling. Int Rev Neurobiol 121:87–116

    Article  CAS  Google Scholar 

  • Geist NR, Carpenter S, Stewart JD (2002) Chemical and morphological analysis of soft tissue preservation in a mosasaur. J Vertebr Paleontol 22:57A

    Google Scholar 

  • Glass K, Ito S, Wilby PR, Sota T, Nakamura A, Bowers CR, Vinther J, Dutta S, Summons R, Briggs DE, Wakamatsu K (2012) Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc Natl Acad Sci 109(26):10218–10223

    Article  CAS  Google Scholar 

  • Glass K, Ito S, Wilby PR, Sota T, Nakamura A, Bowers CR, Miller KE, Dutta S, Summons RE, Briggs DE, Wakamatsu K (2013) Impact of diagenesis and maturation on the survival of eumelanin in the fossil record. Org Geochem 64:29–37

    Article  CAS  Google Scholar 

  • Golenberg EM, Giannasi DE, Clegg MT, Smiley CJ, Durbin M, Henderson D, Zurawski G (1990) Chloroplast DNA sequence from a Miocene Magnolia species. Nature 344:656–658

    Article  CAS  Google Scholar 

  • Graça-Souza AV, Maya-Monteiro C, Paiva-Silva GO, Braz GR, Paes MC, Sorgine MH, Oliveira MF, Oliveira PL (2006) Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem Mol Biol 36(4):322–335

    Article  Google Scholar 

  • Greenwalt DE, Goreva YS, Siljeström SM, Rose T, Harbach RE (2013) Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proc Natl Acad Sci 110(46):18496–18500

    Article  CAS  Google Scholar 

  • Grigoriev SE, Fisher DC, Obadă T, Shirley EA, Rountrey AN, Savvinov GN, Garmaeva DK, Novgorodov GP, Cheprasov MY, Vasilev SE, Goncharov AE, Masharskiy A, Egorova VE, Petrova PP, Egorova EE, Akhremenko YA, van der Plicht J, Galanin AA, Fedorov SE, Ivanov EV, Tikhonov AN (2017) A woolly mammoth (Mammuthus primigenius) carcass from Maly Lyakhovsky Island (New Siberian Islands, Russian Federation). Quat Int 445:89–103

    Article  Google Scholar 

  • Grimaldi DA (1992) Vicariance biogeography, geographic extinctions, and the North American Oligocene tsetse flies. In: Novacek MJ, Wheeler QD (eds) Extinction and phylogeny. Columbia University Press, New York

    Google Scholar 

  • Grimaldi DA (1996) Amber: window to the past. Harry N, Abrams, NY

    Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Grimaldi DA, Bonwich E, Delannoy M, Doberstein S (1994) Electron microscopic studies of mummified tissues in amber fossils. Am Mus Novit 3097:13–11

    Google Scholar 

  • Grunenwald A, Keyser C, Sautereau AM, Crubézy E, Ludes B, Drouet C (2014a) Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing. Anal Bioanal Chem 406(19):4691–4704

    Article  CAS  Google Scholar 

  • Grunenwald A, Keyser C, Sautereau AM, Crubézy E, Ludes B, Drouet C (2014b) Adsorption of DNA on biomimetic apatites: toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA. Appl Surf Sci 292:867–875

    Article  CAS  Google Scholar 

  • Guarino FM, Angelini F, Odierna G, Bianco MR, Bernardo GD, Forte A, Cascino A, Cipollaro M (2000) Detection of DNA in ancient bones using histochemical methods. Biotech Histochem 75(3):110–117

    Article  CAS  Google Scholar 

  • Guhl F (2017) Chagas disease in pre-Columbian civilizations. In: Telleria J, Tibayrenc M (eds) American Trypanosomiasis, Chagas disease, one hundred years of research, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Guhl F, Jaramillo C, Yockteng R, Vallejo GA, Caárdenas-Arroyo F (1997) Trypanosoma cruzi DNA in human mummies. Lancet 349(9062):1370

    Article  CAS  Google Scholar 

  • Guhl F, Jaramillo C, Vallejo GA, Yockteng R, Cardenas-Arroyo F, Fornaciari G, Arriaza B, Aufderheide AC (1999) Isolation of Trypanosoma cruzi DNA in 4000-year-old mummified human tissue from northern Chile. Am J Phys Anthropol 108(4):401–407

    Article  CAS  Google Scholar 

  • Guhl F, Auderheide A, Ramírez JD (2014) From ancient to contemporary molecular eco-epidemiology of Chagas disease in the Americas. Int J Parasitol 44(9):605–612

    Article  CAS  Google Scholar 

  • Gupta NS, Briggs DE, Collinson ME, Evershed RP, Michels R, Jack KS, Pancost RD (2007) Evidence for the in situ polymerisation of labile aliphatic organic compounds during the preservation of fossil leaves: implications for organic matter preservation. Org Geochem 38(3):499–522

    Article  CAS  Google Scholar 

  • Gurfinkel DM, Franklin UM (1988) A study of the feasibility of detecting blood residue on artifacts. J Archaeol Sci 15(1):83–97

    Article  Google Scholar 

  • Gurley LR, Valdez JG, Spall WD, Smith BF, Gillette DD (1991) Proteins in the fossil bone of the dinosaur, Seismosaurus. J Protein Chem 10(1):75–90

    Article  CAS  Google Scholar 

  • Gutiérrez G, Marin A (1998) The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Mol Biol Evol 15(7):926–929

    Article  Google Scholar 

  • Haber M, Mezzavilla M, Xue Y, Tyler-Smith C (2016) Ancient DNA and the rewriting of human history: be sparing with Occam’s razor. Genome Biol 17(1):1

    Article  Google Scholar 

  • Haber M, Doumet-Serhal C, Scheib C, Xue Y, Danecek P, Mezzavilla M, Youhanna S, Martiniano R, Prado-Martinez J, Szpak M, Matisoo-Smith E (2017) Continuity and admixture in the last five millennia of Levantine history from ancient Canaanite and present-day Lebanese genome sequences. Am J Hum Genet 101(2):274–282

    Article  CAS  Google Scholar 

  • Hagelberg E, Hofreiter M, Keyser C (2015) Ancient DNA: the first three decades. Philos T R Soc B 370(1660):20130371

    Article  Google Scholar 

  • Hamburger J, Turetski T, Kapeller I, Deresiewicz R (1991) Highly repeated short DNA sequences in the genome of Schistosoma mansoni recognized by a species-specific probe. Mol Biochem Parasitol 44(1):73–80

    Article  CAS  Google Scholar 

  • Hardy BL, Raff RA, Raman V (1997) Recovery of mammalian DNA from Middle Paleolithic stone tools. J Archaeol Sci 24(7):601–611

    Article  Google Scholar 

  • Hart GD, Kvas I, Soots ML (1977) Autopsy of an Egyptian mummy. 9. Blood group testing. Can Med Assoc J 117(5):476

    CAS  Google Scholar 

  • Hawass Z, Gad YZ, Ismail S, Khairat R, Fathalla D, Hasan N, Ahmed A, Elleithy H, Ball M, Gaballah F, Wasef S (2010) Ancestry and pathology in King Tutankhamun’s family. J Am Med Assoc 303(7):638–647

    Article  CAS  Google Scholar 

  • Heaton K, Solazzo C, Collins MJ, Thomas-Oates J, Bergström ET (2009) Towards the application of desorption electrospray ionisation mass spectrometry (DESI-MS) to the analysis of ancient proteins from artefacts. J Archaeol Sci 36(10):2145–2154

    Article  Google Scholar 

  • Hebsgaard MB, Phillips MJ, Willerslev E (2005) Geologically ancient DNA: fact or artefact? Trends Microbiol 13(5):212–220

    Article  CAS  Google Scholar 

  • Hedges SB, Schweitzer MH (1995) Detecting dinosaur DNA. Science 268:1191–1192

    Article  CAS  Google Scholar 

  • Henikoff S (1995) Detecting dinosaur DNA. Science 268:1192

    Article  CAS  Google Scholar 

  • Henwood A (1992) Exceptional preservation of dipteran flight muscle and the taphonomy of insects in amber. PALAIOS 7(2):203–212

    Article  Google Scholar 

  • Hibbs AC, Secor WE, Van Gerven D, Armelagos G (2011) Irrigation and infection: the immunoepidemiology of schistosomiasis in ancient Nubia. Am J Phys Anthropol 145(2):290–298

    Article  Google Scholar 

  • Hill RC, Wither MJ, Nemkov T, Barrett A, D'Alessandro A, Dzieciatkowska M, Hansen KC (2015) Preserved proteins from extinct Bison latifrons identified by tandem mass spectrometry; hydroxylysine glycosides are a common feature of ancient collagen. Mol Cell Proteomics 14(7):1946–1958

    Article  CAS  Google Scholar 

  • Hortolà P (2002) Red blood cell haemotaphonomy of experimental human bloodstains on techno-prehistoric lithic raw materials. J Archaeol Sci 29(7):733–739

    Article  Google Scholar 

  • Houssaye A (2014) Advances in vertebrate palaeohistology: recent progress, discoveries, and new approaches. Biol J Linn Soc 112(4):645–648

    Article  Google Scholar 

  • Howland DE, Hewitt GM (1994) DNA analysis of extant and fossil beetles. In: Eglinton G, Kay RLF (eds) Biomolecular palaeontology. Oxford University Press, Oxford

    Google Scholar 

  • Izmailova DZ, Serebrennikov VM, Mozzhelina TK, Serebrennikova OV (1996) Features of the molecular composition of metalloporphyrins of crude oils of the Volga-Urals oil-and gas-bearing province. Pet Chem 36(2):111–117

    Google Scholar 

  • Janko M, Stark RW, Zink A (2012) Preservation of 5300 year old red blood cells in the Iceman. J R Soc Interface 9(75):2581–2590

    Article  Google Scholar 

  • Kabayo JP, Ruhm ME, Barnor HF, Zeiller E (1988) Studies on the absorption of ingested haemoglobin-iron in Glossina. Int J Rad Appl Instrumen A Appl Rad Isotop 39(3):207–211

    Article  CAS  Google Scholar 

  • Kane RA, Rollinson D (1998) Comparison of the intergenic spacers and 3′ end regions of the large subunit (28S) ribosomal RNA gene from three species of Schistosoma. Parasitology 117(3):235–242

    Article  CAS  Google Scholar 

  • Kaye TG, Gaugler G, Sawlowicz Z (2008) Dinosaurian soft tissues interpreted as bacterial biofilms. PLoS One 3(7):e2808

    Article  Google Scholar 

  • Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P, Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins TT, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres NM, Cabrera VM, Underhill PA, Bustamante CD, Vigl EE, Samadelli M, Cipollini G, Haas J, Katus H, O'Connor BD, Carlson MRJ, Meder B, Blin N, Meese E, Pusch CM, Zink A (2012) New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun 3:698

    Article  Google Scholar 

  • Kimura B, Brandt SA, Hardy BL, Hauswirth WW (2001) Analysis of DNA from ethnoarchaeological stone scrapers. J Archaeol Sci 28(1):45–53

    Article  Google Scholar 

  • Koch AW, Holstein TW, Mala C, Kurz E, Engel J, David CN (1998) Spinalin, a new glycine-and histidine-rich protein in spines of Hydra nematocysts. J Cell Sci 111(11):1545–1554

    Article  CAS  Google Scholar 

  • Kolb C, Scheyer TM, Veitschegger K, Forasiepi AM, Amson E, Van der Geer AA, Van den Hoek Ostende LW, Hayashi S, Sánchez-Villagra MR (2015) Mammalian bone palaeohistology: a survey and new data with emphasis on island forms. PeerJ 3:e1358

    Article  Google Scholar 

  • Kononenko N, Torrence R, Sheppard P (2016) Detecting early tattooing in the Pacific region through experimental usewear and residue analyses of obsidian tools. J Archaeol Sci Rep 8:147–163

    Google Scholar 

  • Kowalewska M, Szwedo J (2009) Examination of the Baltic amber inclusion surface using SEM techniques and X-ray microanalysis. Palaeogeogr Palaeoclimatol Palaeoecol 271(3):287–291

    Article  Google Scholar 

  • Krumbein WE, Paterson DM, Zavarzin GA (2003) Fossil and recent biofilms. Springer Science+Business Media, Dordrecht

    Book  Google Scholar 

  • Labandeira C, Li L (2021) The history of insect parasitism and the mid-mesozoic parasitoid revolution. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: identification and macroevolution of parasites. Topics in Geobiology 49. Springer, Cham. https://doi.org/10.1007/978-3-030-42484-8_11

  • Lambert-Zazulak P (2003) The international ancient Egyptian mummy tissue Bank at the Manchester Museum as a resource for the palaeoepidemiological study of schistosomiasis. World Archaeol 35(2):223–240

    Article  Google Scholar 

  • Langejans GH (2012) Micro-residue analysis on Early Stone Age tools from Sterkfontein, South Africa: a methodological enquiry. South Afr Archaeol Bulletin 67:120–144

    Google Scholar 

  • Lima VS, Iniguez AM, Otsuki K, Ferreira LF, Araújo A, Vicente AC, Jansen AM (2008) Chagas disease in ancient hunter-gatherer population, Brazil. Emerg Infect Dis 14(6):1001–1002

    Article  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715

    Article  CAS  Google Scholar 

  • Lindgren J, Caldwell MW, Konishi T, Chiappe LM (2010) Convergent evolution in aquatic tetrapods: insights from an exceptional fossil mosasaur. PLoS One 5(8):e11998

    Article  Google Scholar 

  • Lindgren J, Kuriyama T, Madsen H, Sjövall P, Zheng W, Uvdal P, Engdahl A, Moyer AE, Gren JA, Kamezaki N, Ueno S, Schweitzer MH (2017) Biochemistry and adaptive colouration of an exceptionally preserved juvenile fossil sea turtle. Sci Rep 7(1):13324

    Article  Google Scholar 

  • Llamas B, Harkins KM, Fehren-Schmitz L (2017) Genetic studies of the peopling of the Americas: what insights do diachronic mitochondrial genome datasets provide? Quat Int 444:26–35

    Article  Google Scholar 

  • Lombard M (2014) In situ presumptive test for blood residues applied to 62,000-year-old stone tools. South Afr Archaeol Bulletin 69(199):80–86

    Google Scholar 

  • Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457(7230):718–721

    Article  CAS  Google Scholar 

  • Lowenstein JM, Sarich VM, Richardson BJ (1981) Albumin systematics of the extinct mammoth and Tasmanian wolf. Nature 291(5814):409–411

    Article  CAS  Google Scholar 

  • Loy TH (1983) Prehistoric blood residues: detection on tool surfaces and identification of species of origin. Science 220(4603):1269–1271

    Article  CAS  Google Scholar 

  • Loy TH (1998) Organic residues on Oldowan tools from Sterkfontein Cave, South Africa. Abstract of contributions to the dual congress. University of Witwatersrand Press, Johannesburg, pp 74–75

    Google Scholar 

  • Loy TH, Dixon EJ (1998) Blood residues on fluted points from eastern Beringia. Am Antiq 63(1):21–46

    Article  Google Scholar 

  • Loy TH, Hardy BL (1992) Blood residue analysis of 90,000-year-old stone tools from Tabun Cave, Israel. Antiquity 66(250):24–35

    Article  Google Scholar 

  • Loy T, Wood AR (1989) Blood residue analysis at Çayönü Tepesi, Turkey. J Field Archaeol 16(4):451–460

    Google Scholar 

  • Lukashevich ED, Mostovski MB (2003) Hematophagous insects in the fossil record. Paleontol J 37(2):153–161

    Google Scholar 

  • Ma X, Cong P, Hou X, Edgecombe GD, Strausfeld NJ (2014) An exceptionally preserved arthropod cardiovascular system from the early Cambrian. Nat Commun 5:#3560

    Article  Google Scholar 

  • Maa TC (1966) Redescription of the fossil Ornithomya rottensis (Statz) (Diptera: Hippoboscidae). Pacific Insects Monograph 10:3–9

    Google Scholar 

  • Maat GJ (1991) Ultrastructure of normal and pathological fossilized red blood cells compared with pseudopathological biological structures. Int J Osteoarchaeol 1(3–4):209–214

    Article  Google Scholar 

  • Maat GJ (1993) Bone preservation, decay and its related conditions in ancient human bones from Kuwait. Int J Osteoarchaeol 3(2):77–86

    Article  Google Scholar 

  • Maat GJ, Baig MS (1990) Microscopy electron scanning of fossilized sickle-cells. Int J Anthropol 5(3):271–275

    Article  Google Scholar 

  • Madden M, Salo WL, Streitz J, Aufderheide AC, Fornaciari G, Jaramillo C, Vallejo GA, Yockteng R, Arriaza B, Cardenas-Arroyo F, Guhl F (2001) Hybridization screening of very short PCR products for paleoepidemiological studies of Chagas’ disease. BioTechniques 30(1):102–104

    Article  CAS  Google Scholar 

  • Maixner F, Overath T, Linke D, Janko M, Guerriero G, van den Berg BH, Stade B, Leidinger P, Backes C, Jaremek M, Kneissl B (2013) Paleoproteomic study of the Iceman’s brain tissue. Cell Mol Life Sci 70(19):3709–3722

    Article  CAS  Google Scholar 

  • Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49(4):583–590

    Article  CAS  Google Scholar 

  • Mans BJ (2011) Evolution of vertebrate hemostatic and inflammatory control mechanisms in blood-feeding arthropods. J Innate Immun 3(1):41–51

    Article  Google Scholar 

  • Mans BJ, Neitz AW (2004) Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem Mol Biol 34(1):1–17

    Article  CAS  Google Scholar 

  • Marin A, Cerutti N, Massa ER (1999) Use of the amplification refractory mutation system (ARMS) in the study of HbS in predynastic Egyptian remains. Bollettino della Societa italiana di biologia sperimentale 75(5–6):27–30

    CAS  Google Scholar 

  • Marquet PA, Santoro CM, Latorre C, Standen VG, Abades SR, Rivadeneira MM, Arriaza B, Hochberg ME (2012) Emergence of social complexity among coastal hunter-gatherers in the Atacama Desert of northern Chile. Proc Natl Acad Sci 109(37):14754–14760

    Article  CAS  Google Scholar 

  • Martill DM (1990) Macromolecular resolution of fossilized muscle tissue from an elopomorph fish. Nature 346(6280):171

    Article  Google Scholar 

  • Martill DM, Unwin DM (1997) Small spheres in fossil bones: blood corpuscles or diagenetic products? Palaeontology 40(3):619–624

    Google Scholar 

  • Martı́nez-Delclòs X, Briggs DE, Peñalver E (2004) Taphonomy of insects in carbonates and amber. Palaeogeogr Palaeoclimatol Palaeoecol 203(1):19–64

    Article  Google Scholar 

  • Masters PM (1987) Preferential preservation of noncollagenous protein during bone diagenesis: implications for chronometric and stable isotopic measurements. Geochim Cosmochim Acta 51(12):3209–3214

    Article  CAS  Google Scholar 

  • Matheson CD, Veall MA (2014) Presumptive blood test using Hemastix® with EDTA in archaeology. J Archaeol Sci 41:230–241

    Article  CAS  Google Scholar 

  • Matheson CD, David R, Spigelman M, Donoghue HD (2014) Molecular confirmation of Schistosoma and family relationship in two ancient Egyptian mummies. In: Gill-Frerking H, Rosendahl W, Zink A (eds) Yearbook of mummy studies. Verlag Dr. Friedrich Pfeil, Munich

    Google Scholar 

  • Mazumdar S, Mukherjee P, Yazdani SS, Jain SK, Mohmmed A, Chauhan VS (2010) Plasmodium falciparum merozoite surface protein 1 (MSP-1)-MSP-3 chimeric protein: immunogenicity determined with human-compatible adjuvants and induction of protective immune response. Infect Immun 78(2):872–883

    Article  CAS  Google Scholar 

  • McNamara ME, Orr PJ, Kearns SL, Alcalá L, Anadón P, Peñalver-Mollá E (2006) High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians. Geology 34(8):641–644

    Article  CAS  Google Scholar 

  • McNamara M, Orr PJ, Kearns SL, Alcalá L, Anadón P, Peñalver-Mollá E (2010) Organic preservation of fossil musculature with ultracellular detail. Proc R Soc Lond B Biol Sci 277(1680):423–427

    Google Scholar 

  • Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prüfer K, De Filippo C, Sudmant PH, Alkan C, Fu, Do R, Rohland N, Tandon A, Siebauer M, Green RE, Bryc K, Briggs AW, Stenzel U, Dabne J, Shendure J, Kitzman J, Hammer MF, Shunkov MV, Derevianko AP, Patterson N, Andrés AM, Eichler EE, Slatkin M, Reich D, Kelso J, Pääbo S (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338(6104):222–226

    Article  CAS  Google Scholar 

  • Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga JL, Martínez I, Gracia A, de Castro JM, Carbonell E, Pääbo S (2014) A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505(7483):403–406

    Article  CAS  Google Scholar 

  • Miller RL, Armelagos GJ, Ikram S, De Jonge N, Krijger FW, Deelder AM (1992) Palaeoepidemiology of Schistosoma infection in mummies. Br Med J 304(6826):555–556

    Article  CAS  Google Scholar 

  • Miller RL, Ikram S, Armelagos GJ, Walker R, Harer WB, Shiff CJ, Baggett D, Carrigan M, Maret SM (1994) Diagnosis of Plasmodium falciparum infections in mummies using the rapid manual ParaSight™-F test. Trans R Soc Trop Med Hyg 88(1):31–32

    Article  CAS  Google Scholar 

  • Moore CR, Brooks MJ, Kimball LR, Newman ME, Kooyman BP (2016) Early hunter-gatherer tool use and animal exploitation: protein and microwear evidence from the Central Savannah River valley. Am Antiq 81(1):132–147

    Article  Google Scholar 

  • Murphy WA Jr, Nedden DZ, Gostner P, Knapp R, Recheis W, Seidler H (2003) The iceman: discovery and imaging. Radiology 226(3):614–629

    Article  Google Scholar 

  • Muyzer G, Sandberg P, Knapen MH, Vermeer C, Collins M, Westbroek P (1992) Preservation of the bone protein osteocalcin in dinosaurs. Geology 20(10):871–874

    Article  CAS  Google Scholar 

  • Newman M, Julig P (1989) The identification of protein residues on lithic artifacts from a stratified boreal forest site. Can J Archaeol 13:119–132

    Google Scholar 

  • Nichol H, Law JH, Winzerling JJ (2002) Iron metabolism in insects. Annu Rev Entomol 47(1):535–559

    Article  CAS  Google Scholar 

  • Nielson KB, Atkin CL, Winge DR (1985) Distinct metal-binding configurations in metallothionein. J Biol Chem 260(9):5342–5350

    Article  CAS  Google Scholar 

  • Odell GH (2001) Stone tool research at the end of the millennium: classification, function, and behavior. J Archaeol Res 9(1):45–100

    Article  Google Scholar 

  • O'Donoghue P (2017) Haemoprotozoa: making biological sense of molecular phylogenies. Int J Parasitol Paras Wildlife 6(3):241–256

    Article  Google Scholar 

  • Olalde I, Allentoft ME, Sánchez-Quinto F, Santpere G, Chiang CW, DeGiorgio M, Prado-Martinez J, Rodríguez JA, Rasmussen S, Quilez J, Ramírez O, Marigorta UM, Fernández-Callejo M, Prada ME, Encinas JMV, Nielsen R, Netea MG, Novembre J, Sturm RA, Sabeti P, Marquès-Bonet T, Navarro A, Willerslev E, Lalueza-Fox C (2014) Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507(7491):225–228

    Article  CAS  Google Scholar 

  • Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, Johnson PL, Fumagalli M, Vilstrup JT, Raghavan M, Korneliussen T, Malaspinas A, Vogt J, Szklarczyk D, Kelstrup CD, Vinther J, Dolocan A, Stenderup J, Velazquez AMV, Cahill J, Rasmussen M, Wang X, Min J, Zazula GD, Seguin-Orlando A, Mortensen C, Magnussen K, Thompson JF, Weinstock J, Gregersen K, Røed KH, Eisenmann V, Rubin CJ, Miller DC, Antczak DF, Bertelsen MF, Brunak S, Al-Rasheid KAS, Ryder O, Andersson L, Mundy J, Krogh A, Gilbert MTP, Kjær K, Sicheritz-Ponten T, Jensen LJ, Olsen JV, Hofreiter M, Nielsen R, Shapiro B, Wang J, Willerslev E (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499(7456):74–78

    Article  CAS  Google Scholar 

  • Ortner DJ, Tuross N, Stix AI (1992) New approaches to the study of disease in archeological New World populations. Hum Biol 64(3):337–360

    CAS  Google Scholar 

  • Oskam CL, Haile J, McLay E, Rigby P, Allentoft ME, Olsen ME, Bengtsson C, Miller GH, Schwenninger JL, Jacomb C, Walter R (2010) Fossil avian eggshell preserves ancient DNA. Proc R Soc Lond B Biol Sci 277(1690):1991–2000

    CAS  Google Scholar 

  • Owen M, Triffitt JT (1976) Extravascular albumin in bone tissue. J Physiol 257:293–307

    Article  CAS  Google Scholar 

  • Paleobiology Database (2017). Fossilworks. http://fossilworks.org. Accessed 13 Nov 2017

  • Papageorgopoulou C, Link K, Rühli FJ (2015) Histology of a woolly mammoth (Mammuthus primigenius) preserved in permafrost, Yamal Peninsula, Northwest Siberia. Anat Rec 298(6):1059–1071

    Article  CAS  Google Scholar 

  • Pawlicki R (1995) Histochemical demonstration of DNA in osteocytes from dinosaur bones. Folia Histochem Cytobiol 33(3):183–186

    CAS  Google Scholar 

  • Pawlicki R, Nowogrodzka-Zagórska M (1998) Blood vessels and red blood cells preserved in dinosaur bones. Anat Anz 180(1):73–77

    Article  CAS  Google Scholar 

  • Pečnerová P, Díez-del-Molino D, Vartanyan S, Dalén L (2016) Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth. Sci Rep 6:25274

    Article  Google Scholar 

  • Peñalver E, Pérez-de la Fuente R (2014) Palaeobiology: unearthing the secrets of ancient immature insects. elife 3:e03443

    Article  Google Scholar 

  • Peñalver E, Arillo A, Delclòs X, Peris D, Grimaldi DA, Anderson S, Nascimbene PC, Pérez-de la Fuente R (2017) Parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat Commun 8:1924

    Article  Google Scholar 

  • Penney D, Wadsworth C, Fox G, Kennedy SL, Preziosi RF, Brown TA (2013) Absence of ancient DNA in sub-fossil insect inclusions preserved in ‘Anthropocene’ Colombian copal. PLoS One 8(9):e73150

    Article  CAS  Google Scholar 

  • Peris D, Janssen K, Barthel, HJ, Bierbaum G, Delclòs X, Peñalver E, Solórzano-Kraemer MM, Jordal BH, Rust J (2020) DNA from resin-embedded organisms: Past, present and future. PloS one 15(9):e0239521

    Google Scholar 

  • Perkins EM, Donnellan SC, Bertozzi T, Whittington ID (2010) Closing the mitochondrial circle on paraphyly of the Monogenea (Platyhelminthes) infers evolution in the diet of parasitic flatworms. Int J Parasitol 40(11):1237–1245

    Article  CAS  Google Scholar 

  • Perumal S, Antipova O, Orgel JP (2008) Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Natl Acad Sci 105(8):2824–2829

    Article  CAS  Google Scholar 

  • Peterson JE, Lenczewski ME, Scherer RP (2010) Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs. PLoS One 5(10):e13334

    Article  Google Scholar 

  • Pevzner PA, Kim S, Ng J (2008) Comment on “protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”. Science 321(5892):1040b

    Article  Google Scholar 

  • Poinar G (2004) Palaeomyia burmitis (Diptera: Phlebotomidae), a new genus and species of Cretaceous sand flies with evidence of blood-sucking habits. Proc Entomol Soc Wash 106(3):598–605

    Google Scholar 

  • Poinar G (2005a) Culex malariager, n. sp. (Diptera: Culicidae) from Dominican amber: the first fossil mosquito vector of Plasmodium. Proc Entomol Soc Wash 107(3):548–553

    Google Scholar 

  • Poinar G (2005b) Plasmodium dominicana n. sp. (Plasmodiidae: Haemospororida) from Tertiary Dominican amber. Syst Parasitol 61(1):47–52

    Article  Google Scholar 

  • Poinar G (2008) Lutzomyia adiketis sp. n. (Diptera: Phlebotomidae), a vector of Paleoleishmania neotropicum sp. n. (Kinetoplastida: Trypanosomatidae) in Dominican amber. Parasit Vect 1(1):22

    Article  Google Scholar 

  • Poinar G (2014) Evolutionary history of terrestrial pathogens and endoparasites as revealed in fossils and subfossils. Adv Biol 2014(181353):1–29

    Article  Google Scholar 

  • Poinar G (2018) Vertebrate pathogens vectored by ancient hematophagous arthropods. Hist Biol:1–14

    Google Scholar 

  • Poinar G (2021) Fossil record of viruses, parasitic bacteria and parasitic protozoa. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: identification and macroevolution of parasites. Topics in Geobiology 49. Springer, Cham. https://doi.org/10.1007/978-3-030-42484-8_2

  • Poinar G, Brown A (2012) The first fossil streblid bat fly, Enischnomyia stegosoma n. g., n. sp. (Diptera: Hippoboscoidea: Streblidae). Syst Parasitol 81:79–86

    Article  Google Scholar 

  • Poinar G Jr (2017) Fossilized mammalian erythrocytes associated with a tick reveal ancient Piroplasms. J Med Entomol 54(4):895–900

    Article  Google Scholar 

  • Poinar G Jr, Poinar R (2004) Evidence of vector-borne disease of Early Cretaceous reptiles. Vect-Borne Zoonot Dis 4(4):281–284

    Article  Google Scholar 

  • Poinar G, Poinar R (2004) Paleoleishmania proterus n. gen., n. sp. (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber. Protist 155(3):305–310

    Article  Google Scholar 

  • Poinar G, Poinar R (2005) Fossil evidence of insect pathogens. J Invertebr Pathol 89(3):243–250

    Article  Google Scholar 

  • Poinar G, Poinar R (2010) What bugged the dinosaurs? Insects, disease, and death in the cretaceous. Princeton University Press, Princeton

    Book  Google Scholar 

  • Poinar G, Telford SR (2005) Paleohaemoproteus burmacis gen. n., sp. n. (Haemospororida: Plasmodiidae) from an Early Cretaceous biting midge (Diptera: Ceratopogonidae). Parasitology 131(1):79–84

    Article  Google Scholar 

  • Porto IM, Laure HJ, Tykot RH, de Sousa FB, Rosa JC, Gerlach RF (2011) Recovery and identification of mature enamel proteins in ancient teeth. Eur J Oral Sci 119(s1):83–87

    Article  Google Scholar 

  • Poser JW, Price PA (1979) A method for decarboxylation of gamma-carboxyglutamic acid in proteins. J Biol Chem 254(2):431–436

    Article  CAS  Google Scholar 

  • Potter BA, Reuther JD, Lowenstein JM, Scheuenstuhl G (2010) Assessing the reliability of pRIA for identifying ancient proteins from archaeological contexts. J Archaeol Sci 37(5):910–918

    Article  Google Scholar 

  • Prager EM, Wilson AC, Lowenstein JM, Sarich VM (1980) Mammoth albumin. Science 209(4453):287–289

    Article  CAS  Google Scholar 

  • Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, De Filippo C, Li H, Mallick S, Dannemann M, Fu Q, Kircher M, Kuhlwilm M, Lachmann M, Meyer M, Ongyerth M, Siebauer M, Theunert C, Tandon A, Moorjani P, Pickrell J, Mullikin JC, Vohr SH, Green RE, Hellmann I, Johnson PLF, Blanche H, Cann H, Kitzman JO, Shendure J, Eichler EE, Lein ES, BakkenTE GLV, Doronichev VB, Shunkov MV, Derevianko AP, Viola B, Slatkin M, Reich D, Kelso J, Pääbo S (2014) The complete genome sequence of a Neandertal from the Altai Mountains. Nature 505(7481):43–49

    Article  Google Scholar 

  • Pushie MJ, Pratt BR, Macdonald TC, George GN, Pickering IJ (2014) Evidence for biogenic copper (hemocyanin) in the middle Cambrian arthropod Marrella from the Burgess Shale. PALAIOS 29(10):512–524

    Article  Google Scholar 

  • Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, Metspalu M, Metspalu E, Kivisild T, Gupta R, Bertalan M, Nielsen K, Gilbert MT, Wang Y, Raghavan M, Campos PF, Kamp HM, Wilson AS, Gledhill A, Tridico S, Bunce M, Lorenzen ED, Binladen J, Guo X, Zhao J, Zhang X, Zhang H, Li Z, Chen M, Orlando L, Kristiansen K, Bak M, Tommerup N, Bendixen C, Pierre TL, Grønnow B, Meldgaard M, Andreasen C, Fedorova SA, Osipova LP, Higham TF, Ramsey CB, Hansen TV, Nielsen FC, Crawford MH, Brunak S, Sicheritz-Pontén T, Villems R, Nielsen R, Krogh A, Wang J, Willerslev E (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463(7282):757–762

    Article  CAS  Google Scholar 

  • Rasmussen M, Anzick SL, Waters MR, Skoglund P, DeGiorgio M, Stafford TW Jr, Rasmussen S, Moltke I, Albrechtsen A, Doyle SM, Poznik GD (2014) The genome of a late Pleistocene human from a Clovis burial site in western Montana. Nature 506(7487):225–229

    Article  CAS  Google Scholar 

  • Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M, Sjögren KG, Pedersen AG, Schubert M, Van Dam A, Kapel CM, Nielsen HB (2015) Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163(3):571–582

    Article  CAS  Google Scholar 

  • Remington SJ (1994) Identifying species of origin from prehistoric blood residues. Science 266(5183):298–299

    Article  CAS  Google Scholar 

  • Ricqlès de AJ (2011) Vertebrate palaeohistology: past and future. Comptes Rendus Palevol 10(5):509–515

    Article  Google Scholar 

  • Rothschild B, Turnbull W (1987) Treponemal (Treponema) infection in a Pleistocene bear. Nature 329:61–62

    Article  CAS  Google Scholar 

  • Ruffer MA (1910) Note on the presence of “bilharzia haematobia” in Egyptian mummies of the twentieth dynasty [1250-1000 BC]. Br Med J 1(2557):16

    Article  CAS  Google Scholar 

  • Rutherford P (1999) Immunocytochemistry and the diagnosis of schistosomiasis: ancient and modern. Parasitol Today 15(9):390–391

    Article  CAS  Google Scholar 

  • Rutherford P (2000) The diagnosis of Schistosomiasis in modern and ancient tissues by means of immunocytochemistry. Chungará (Arica) 32(1):127–131

    Article  Google Scholar 

  • Rutherford P (2005) Schistosomiasis in modern and ancient tissues. J Biol Res 80:80–83

    Google Scholar 

  • Rutherford P (2008) The use of immunocytochemistry to diagnose disease in mummies. In: David R (ed) Egyptian mummies and modern science. Cambridge University Press, Cambridge

    Google Scholar 

  • Rybczynski N, Gosse JC, Harington CR, Wogelius RA, Hidy AJ, Buckley M (2013) Mid-Pliocene warm-period deposits in the high Arctic yield insight into camel evolution. Nat Commun 4:1550–1559

    Article  Google Scholar 

  • Saito-Ito A, Tsuji M, Wei Q, He S, Matsui T, Kohsaki M, Arai S, Kamiyama T, Hioki K, Ishihara C (2000) Transfusion-acquired, autochthonous human babesiosis in Japan: isolation of Babesia microti-like parasites with hu-RBC-SCID mice. J Clin Microbiol 38(12):4511–4516

    Article  CAS  Google Scholar 

  • Saitta ET, Liang R, Lau CY, Brown CM, Longrich NR, Kaye TG, Novak BJ, Salzberg S, Donohoe P, Dickinson M, Vinther J, Bull ID, Brooker RA, Martin P, Abbott GD, Knowles TDJ, Penkman K, Onstott TCF (2018a) Life Inside A Dinosaur Bone: A Thriving Microbiome bioRxiv:400176

    Google Scholar 

  • Saitta ET, Fletcher I, Martin P, Pittman M, Kaye TG, True LD, Norell MA, Abbott GD, Summons RE, Penkman K, Vinther J (2018b) Preservation of feather fibers from the Late Cretaceous dinosaur Shuvuuia deserti raises concern about immunohistochemical analyses on fossils. Org Geochem 125:142–151

    Article  CAS  Google Scholar 

  • Saitta ET, Kaye TG, Vinther J (2019) Sediment-encased maturation: a novel method for simulating diagenesis in organic fossil preservation. Palaeontology 62(1):135–150

    Article  Google Scholar 

  • Salamon M, Tuross N, Arensburg B, Weiner S (2005) Relatively well-preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A 102(39):13783–13788

    Article  CAS  Google Scholar 

  • Sarkissian C, Allentoft ME, Ávila-Arcos MC, Barnett R, Campos PF, Cappellini E, Ermini L, Fernández R, da Fonseca R, Ginolhac A, Hansen AJ, Hansen AJ, Jónsson H, Korneliussen T, Margaryan A, Martin MD, Moreno-Mayar JV, Raghavan M, Rasmussen M, Velasco MS, Schroeder H, Schubert M, Seguin-Orlando A, Wales N, Gilbert TP, Willerslev E, Orlando L (2015) Ancient genomics. Philos Trans R Soc B 370(1660):20130387

    Article  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240

    Article  CAS  Google Scholar 

  • Schmidt-Schultz TH, Schultz M (2015) Investigation on extracellular matrix proteins in fossil bone: facts and perspectives. In: Henke W, Tattersall I (eds) Handbook of paleoanthropology. Springer, Berlin

    Google Scholar 

  • Schultz M (1997) Microscopic investigation of excavated skeletal remains: a contribution to paleopathology and forensic medicine. In: Haglund WD, Sorg MH (eds) Forensic taphonomy. The postmortem fate of human remains. CRC Press, Boca Raton

    Google Scholar 

  • Schultz M (2001) Paleohistopathology of bone: a new approach to the study of ancient diseases. Am J Phys Anthropol 116(S33):106–147

    Article  Google Scholar 

  • Schweitzer MH, Horner JR (1999) Intravascular microstructures in trabecular bone tissues of Tyrannosaurus rex. Annales de Paléontologie 85(3):179–192

    Article  Google Scholar 

  • Schweitzer MH, Johnson C, Zocco TG, Horner JR, Starkey JR (1997a) Preservation of biomolecules in cancellous bone of Tyrannosaurus rex. J Vertebr Paleontol 17(2):349–359

    Article  Google Scholar 

  • Schweitzer MH, Marshall M, Carron K, Bohle DS, Busse SC, Arnold EV, Barnard D, Horner JR, Starkey JR (1997b) Heme compounds in dinosaur trabecular bone. Proc Natl Acad Sci 94(12):6291–6296

    Article  CAS  Google Scholar 

  • Schweitzer M, Hill CL, Asara JM, Lane WS, Pincus SH (2002) Identification of immunoreactive material in mammoth fossils. J Mol Evol 55(6):696–705

    Article  CAS  Google Scholar 

  • Schweitzer MH, Wittmeyer JL, Horner JR, Toporski JK (2005a) Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science 307(5717):1952–1955

    Article  CAS  Google Scholar 

  • Schweitzer MH, Chiappe L, Garrido AC, Lowenstein JM, Pincus SH (2005b) Molecular preservation in Late Cretaceous sauropod dinosaur eggshells. Proc R Soc Lond B 272(1565):775–784

    CAS  Google Scholar 

  • Schweitzer MH, Wittmeyer JL, Horner JR (2007a) Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present. Proc R Soc Lond B 274(1607):183–197

    Google Scholar 

  • Schweitzer MH, Suo Z, Avci R, Asara JM, Allen MA, Arce FT, Horner JR (2007b) Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 316(5822):277–280

    Article  CAS  Google Scholar 

  • Schweitzer MH, Avci R, Collier T, Goodwin MB (2008) Microscopic, chemical and molecular methods for examining fossil preservation. Comptes Rendus Palevol 7(2):159–184

    Article  Google Scholar 

  • Schweitzer MH, Zheng W, Organ CL, Avci R, Suo Z, Freimark LM, Lebleu VS, Duncan MB, Vander Heiden MG, Neveu JM, Lane WS, Cottrell JS, Horner JR, Cantley LC, Kalluri R, Asara JM (2009) Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324(5927):626–631

    Article  CAS  Google Scholar 

  • Schweitzer MH, Zheng W, Cleland TP, Bern M (2013) Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone 52(1):414–423

    Article  CAS  Google Scholar 

  • Schweitzer MH, Zheng W, Cleland TP, Goodwin MB, Boatman E, Theil E, Marcus MA, Fakra SC (2014) A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proc R Soc Lond B 281(1775):20132741

    Google Scholar 

  • Schweitzer MH, Schroeter ER, Cleland TP, Zheng W (2019) Paleoproteomics of Mesozoic dinosaurs and other Mesozoic fossils. Proteomics 19(16):1800251

    Google Scholar 

  • Seitz ALL (1907) Vergleichende Studien tiber den mikroskopischen Knochenbau fossiler und rezenter Reptilien, und dessen Bedeutung ffir das Wachstum und Umbildung des Knochengewebes im allgemeinen. Abhandlungen der kaiserlichen Leopold-Carolingischen deutschen Akademie der Naturforscher Nova Acta 87:230–370

    Google Scholar 

  • Shanks OC, Hodges L, Tilley L, Kornfeld M, Larson ML, Ream W (2005) DNA from ancient stone tools and bones excavated at Bugas-Holding, Wyoming. J Archaeol Sci 32(1):27–38

    Article  Google Scholar 

  • Shoshani J, Lowenstein JM, Walz DA, Goodman M (1985) Proboscidean origins of mastodon and woolly mammoth demonstrated immunologically. Paleobiology 11(4):429–437

    Article  Google Scholar 

  • Smith PR, Wilson MT (1990) Detection of haemoglobin in human skeletal remains by ELISA. J Archaeol Sci 17(3):255–268

    Article  Google Scholar 

  • Smith PR, Wilson MT (1992) Blood residues on ancient tool surfaces: a cautionary note. J Archaeol Sci 19(3):237–241

    Article  Google Scholar 

  • Smith PR, Wilson MT (2001) Blood residues in archaeology. In: Brothwell DR, Pollard AM (eds) Handbook of Archaeological Sciences. John Wiley and Sons, Chichester

    Google Scholar 

  • Smith CI, Chamberlain AT, Riley MS, Alan Cooper A, Stringer CB, Collins MJ (2001) Not just old but old and cold? Nature 410(6830):771–772

    Article  CAS  Google Scholar 

  • Stachowicz A, Siudut J, Suski M, Olszanecki R, Korbut R, Undas A, Wiśniewski JR (2017) Optimization of quantitative proteomic analysis of clots generated from plasma of patients with venous thromboembolism. Clin Proteomics 14(1):38

    Article  Google Scholar 

  • Stankiewicz BA, Poinar HN, Briggs DE, Evershed RP, Poinar GO (1998) Chemical preservation of plants and insects in natural resins. Proc R Soc Lond B 265(1397):641–647

    Article  CAS  Google Scholar 

  • Statz G (1940) Neue Dipteren (Brachycera et Cyclorhapha) aus dem Oberoligozän von Rott. Palaeontogr Abt A 91:120–174

    Google Scholar 

  • Suo Z, Avci R, Schweitzer MH, Deliorman M (2007) Porphyrin as an ideal biomarker in the search for extraterrestrial life. Astrobiology 7(4):605–615

    Article  CAS  Google Scholar 

  • Surmik D, Boczarowski A, Balin K, Dulski M, Szade J, Kremer B, Pawlicki R (2016) Spectroscopic studies on organic matter from Triassic reptile bones, Upper Silesia, Poland. PLoS One 11(3):e0151143

    Article  Google Scholar 

  • Sutlovic D, Gamulin S, Definis-Gojanovic M, Gugic D, Andjelinovic S (2008) Interaction of humic acids with human DNA: proposed mechanisms and kinetics. Electrophoresis 29(7):1467–1472

    Article  CAS  Google Scholar 

  • Terwilliger NB, Ryan MC, Towle D (2005) Evolution of novel functions: cryptocyanin helps build new exoskeleton in Cancer magister. J Exp Biol 208(13):2467–2474

    Article  CAS  Google Scholar 

  • Timmann C, Meyer CG (2010) Malaria, mummies, mutations: Tutankhamun’s archaeological autopsy. Trop Med Int Health 15(11):1278–1280

    Article  Google Scholar 

  • Tomiak PJ, Penkman KE, Hendy EJ, Demarchi B, Murrells S, Davis SA, McCullagh P, Collins MJ (2013) Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons. Quat Geochronol 16:87–109

    Article  Google Scholar 

  • Torres JM, Borja C, Olivares EG (2002) Immunoglobulin G in 16 million-year-old fossil bones from Venta Micena (Granada, Spain). J Archaeol Sci 29(2):167–175

    Article  Google Scholar 

  • Tuross N (1989) Albumin preservation in the Taima-Taima mastodon skeleton. Appl Geochem 4(3):255–259

    Article  CAS  Google Scholar 

  • Tuross N (1991) Recovery of bone and skin proteins from human skeletal tissue: IgG, osteonectin, and albumin. In: Ortner DJ, Aufderheide AC (eds) Human Paleo- pathology: current synthesis and future options. Smithsonian Press, Washington, D.C.

    Google Scholar 

  • Tuross N, Dillehay TD (1995) The mechanism of organic preservation at Monte Verde, Chile, and one use of biomolecules in archaeological interpretation. J Field Archaeol 22(1):97–110

    Google Scholar 

  • Tuross N, Stathoplos L (1993) Ancient proteins in fossil bones. Methods Enzymol 224:121–129

    Article  CAS  Google Scholar 

  • Vidal UL (2010) Protein preservation in fossil whale bones of the Miocene/Pliocene Pisco formation, Peru. Unpublished dissertation, Loma Linda University

    Google Scholar 

  • Voigt E (1939) Fossil red blood corpuscles found in a lizard from the Middle Eocene lignite of the Geiseltal near Halle: research and progress. Quarterly Review of German Science 5:53–56

    Google Scholar 

  • Voigt E (1988) Preservation of soft tissues in the Eocene lignite of the Geiseltal near Halle/S. Cour Forschungsinst Senck 107:325–343

    Google Scholar 

  • Wadsworth C, Buckley M (2014) Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun Mass Spectrom 28(6):605–615

    Article  CAS  Google Scholar 

  • Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C, Poinar D (2014) Yersinia pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis 14(4):319–326

    Article  Google Scholar 

  • Walden KK, Robertson HM (1997) Ancient DNA from amber fossil bees? Mol Biol Evol 14(10):1075–1077

    Article  CAS  Google Scholar 

  • Walker PL, Bathurst RR, Richman R, Gjerdrum T, Andrushko VA (2009) The causes of porotic hyperostosis and cribra orbitalia: a reappraisal of the iron-deficiency-anemia hypothesis. Am J Phys Anthropol 139(2):109–125

    Article  Google Scholar 

  • Wang B, Li J, Fang Y, Zhang H (2009) Preliminary elemental analysis of fossil insects from the Middle Jurassic of Daohugou, Inner Mongolia and its taphonomic implications. Chin Sci Bull 54(5):783–787

    CAS  Google Scholar 

  • Warren-Hicks WJ, Schroder GD, Bigelow RH (1979) Marking fleas with 59Fe: uptake and retention of a tag acquired from the natural host. J Med Entomol 16(5):432–436

    Article  CAS  Google Scholar 

  • Weiner S, Lowenstam HA, Hood L (1976) Characterization of 80-million-year-old mollusk shell proteins. Proc Natl Acad Sci 73(8):2541–2545

    Article  CAS  Google Scholar 

  • Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, Morris AG, Alt KW, Caramelli D, Dresely V, Farrell M (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544(7650):357–361

    Article  CAS  Google Scholar 

  • Wiechmann I, Brandt E, Grupe G (1999) State of preservation of polymorphic plasma proteins recovered from ancient human bones. Int J Osteoarchaeol 9(6):383–394

    Article  Google Scholar 

  • Wiemann J, Fabbri M, Yang T, Stein K, Sander PM, Norell MA, Briggs DE (2018) Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat Commun 9(1):1–9

    Article  CAS  Google Scholar 

  • Williamson BS (2000) Prehistoric stone tool residue analysis from Rose cottage cave and other southern African sites. Unpublished dissertation. University of the Witwatersrand, Johannesburg

    Google Scholar 

  • Winzerling JJ, Pham DQ (2006) Iron metabolism in insect disease vectors: mining the Anopheles gambiae translated protein database. Insect Biochem Mol Biol 36(4):310–321

    Article  CAS  Google Scholar 

  • Wood JR (2018) DNA barcoding of ancient parasites. Parasitology 145(5):646–655

    Article  Google Scholar 

  • Wood JR, Wilmshurst JM, Rawlence NJ, Bonner KI, Worthy TH, Kinsella JM, Cooper A (2013) A megafauna’s microfauna: gastrointestinal parasites of New Zealand’s extinct moa (Aves: Dinornithiformes). PLoS One 8(2):e57315

    Article  CAS  Google Scholar 

  • Woodward SR, Weyand NJ, Bunnell M (1994) DNA sequence from Cretaceous period bone fragments. Science 266(5188):1229–1232

    Article  CAS  Google Scholar 

  • Yao Y, Cai W, Xu X, Shih C, Engel MS, Zheng X, Zhao Y, Ren D (2014) Blood-feeding true bugs in the Early Cretaceous. Curr Biol 24(15):1786–1792

    Article  CAS  Google Scholar 

  • Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR III (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113(4):2343–2394

    Article  CAS  Google Scholar 

  • Zimmerman MR (1973) Blood cells preserved in a mummy 2000 years old. Science 180(4083):303–304

    Article  CAS  Google Scholar 

  • Zink AR, Spigelman M, Schraut B, Greenblatt CL, Nerlich AG, Donoghue HD (2006) Leishmaniasis in Ancient Egypt and Upper Nubia. Emerg Infect Dis 12(10):1616–1617

    Article  Google Scholar 

  • Zischler H, Höss M, von Haeseler A, van der Kuyl AC, Goudsmit J, Pääbo S (1995) Detecting dinosaur DNA. Science 268:1192–1194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review would not have been conceived let alone written without foresight and support of Kenneth De Baets and John Warren Huntley, editors of this volume. I would like to express my appreciation to those authors who provided their original photographs and artwork from previously published research. I also wish to thank Derek Briggs, whose careful review and constructive criticisms significantly improved the manuscript. Particular thanks go to the staff of the library of the National Museum of Natural History without whom this work would have been impossible, and to Conrad Labandeira for his sponsorship of the author’s Research Associate position in the Museum’s Paleobiology department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Greenwalt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greenwalt, D. (2021). Blood to Molecules: The Fossil Record of Blood and Its Constituents. In: De Baets, K., Huntley, J.W. (eds) The Evolution and Fossil Record of Parasitism. Topics in Geobiology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-52233-9_12

Download citation

Publish with us

Policies and ethics