Skip to main content

Conceptual Emergence

  • Chapter
  • First Online:
A Treatise on the Magnetic Vector Potential

Abstract

The conceptual emergence of the magnetic vector potential is explored historically and mathematically in both classical and quantum physics. It was first defined by Michael Faraday as the electrotonic state and then formulated as a vector potential for the magnetic field by James Clerk Maxwell. We argue that magnetic field lines highlight axes of rotation of electromagnetic momentum and demonstrate that the magnetic vector potential takes the form of a ring vortex around a current element. In light of the Aharanov-Bohm effect, the physical existence of the magnetic vector potential field is defended. Finally we touch on the Aharanov-Casher effect and geometric phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Aharonov and Bohm [23] also proposed an similar experimental setup showing the interference effect of the electric scalar potential in a region with an electric field free region. The relative phase change is then given by a time integral of the potential differences.

References

  1. American Physical Society, APS News 17(7) (2008). https://www.aps.org/publications/apsnews/200807/physicshistory.cfm

  2. A.K.T. Assis, J.P.M.C. Chaib, Ampère’s Electrodynamics (Montreal, Apeiron, 2015)

    Google Scholar 

  3. C.S. Potts, H.C.P. Richards, H. Khunrath, Electricity: Its Medical and Surgical Applications, Including Radiotherapy and Phototherapy (Lea & Febiger, Philadelphia, New York, 1911)

    Google Scholar 

  4. J.M. Thomas, Michael faraday and The Royal Institution: The Genius of Man and Place (Taylor & Francis, Oxford, 1991)

    Book  Google Scholar 

  5. M. Faraday, The Correspondence of Michael Faraday, vol. 1 (London, The Institution of Engineering and Technology, 1991), pp. 1811–1831

    Google Scholar 

  6. W.H. Oskay, Creative Commons: Attribution 2.0 Generic—creativecommons.org/licenses/by/2.0/. www.evilmadscientist.com (2010)

  7. A.W. Poyser, Magnetism and Electricity: A Manual for Students in Advanced Classes (Longmans, Green, & Co., New York, 1892)

    Google Scholar 

  8. M. Geupel, Deviant Art (2011). https://racoonart.deviantart.com/art/humming-top-198925449

  9. M. Faraday, Experimental Researches in Electricity, vols. 1 and 2 (Taylor and Francis, London, 1839)

    Google Scholar 

  10. S.P. Israelsen, The Purdue Historian 7(1), 1–16 (2014)

    Google Scholar 

  11. J. Bence, The Life and Letters of Faraday (Longmans, Green and Co, London, 1870)

    Google Scholar 

  12. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1873)

    MATH  Google Scholar 

  13. J.C. Maxwell, Philos. Mag. Ser. 23(151), 12–24 (1861)

    Google Scholar 

  14. A. Einstein, Die Naturwissenschaften 14(11), 223–224 (1926)

    Article  ADS  Google Scholar 

  15. C.N. Yang, Phys. Today 67(11), 45–51 (2014)

    Article  Google Scholar 

  16. H. Lamb, Hydrodynamics (C.J. Clay and Sons, London, 1895)

    MATH  Google Scholar 

  17. P. Tait, Lectures on Some Recent Advances in Physical Science (MacMillan & Co., London, 1876)

    Google Scholar 

  18. A.C.T. Wu, C.N. Yang, Int. J. Mod. Phys. A 21(16), 3235–3277 (2006)

    Article  ADS  Google Scholar 

  19. M.J. Crowe, A History of Vector Analysis: The Evolution of the Idea of a Vectorial System (University of Notre Dame Press, London, 1967)

    MATH  Google Scholar 

  20. R.P. Feynman, R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics, Vol. I and II (Addison-Wesley, 1963)

    Google Scholar 

  21. D.J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, New Jersey, 1995)

    MATH  Google Scholar 

  22. J.D. Jackson, L. Okun, Rev. Mod. Phys. 73(3), 663–680 (2001)

    Article  ADS  Google Scholar 

  23. Y. Aharonov, D. Bohm, Phys. Rev. 115(3), 485–491 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  24. R.G. Chambers, Phys. Rev. Lett. 5(1), 3–5 (1960)

    Article  ADS  Google Scholar 

  25. Tonomura, Phys. Rev. Lett. 56(8), 792–795 (1986)

    Google Scholar 

  26. Y. Aharonov, D. Bohm, Phys. Rev. 123(4), 1511–1524 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  27. M.V. Berry, R.G. Chambers, M.D. Large, C. Upstill, J.C. Walmsley, Eur. J. Phys. 1(3), 154–162 (1980)

    Article  Google Scholar 

  28. Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319–321 (1984). https://doi.org/10.1103/PhysRevLett.53.319

  29. M.V. Berry, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 392(1802), 45–57 (1984). https://doi.org/10.1098/rspa.1984.0023

  30. S. Chaudhary, M. Endres, G. Refael, Phys. Rev. B 98, 064310 (2018). https://doi.org/10.1103/PhysRevB.98.064310

  31. E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, E. Karimi, Nat. Rev. Phys. 1(7), 437–449 (2019). https://doi.org/10.1038/s42254-019-0071-1

  32. B. Simon, Phys. Rev. Lett. 51, 2167–2170 (1983). https://doi.org/10.1103/PhysRevLett.51.2167

  33. C.N. Yang, Tsinghua Sci. Technol. 3(1), 861–970 (1998)

    Google Scholar 

  34. M. Nakahara, Geometry, Topology and Physics (Taylor & Francis Group, 2003)

    Google Scholar 

  35. R. Healey, Gauging What’s Real: The Conceptual Foundations of Gauge Theories (Oxford University Press, 2007)

    Google Scholar 

  36. E. Noether, Transp. Theory Stat. Phys. 1(3), 186–207 (1971)

    Article  ADS  Google Scholar 

  37. K.A. Brading, Stud. History Philos. Mod. Phys. 33, 3–22 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Lasenby, C. Doran, S. Gull, Philos. Trans. R. Soc. Lond. 356(1737), 487–582 (2004)

    Article  ADS  Google Scholar 

  39. D.J. Griffiths, Introduction to Elementary Particles (John Wiley & Sons, New York, 1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristján Óttar Klausen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klausen, K.Ó. (2020). Conceptual Emergence. In: A Treatise on the Magnetic Vector Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-52222-3_2

Download citation

Publish with us

Policies and ethics