Skip to main content

Study of Physicochemical Properties of CoCrMo Alloy with PLCL Polymer Coating Intended for Urology

  • Conference paper
  • First Online:
Innovations in Biomedical Engineering (AAB 2020)

Abstract

The paper presents the results of the physicochemical properties test of biodegradable polymer coating on CoCrMo alloy intended for applications in urology. The Co alloy was subjected to grinding, mechanical polishing and chemical passivation and was coated by the dip-coating method with a poly(L,L-lactide-\(\varepsilon \)-caprolactone)—PLCL biodegradable polymer. The paper shows the results of the macroscopic evaluation, study of wettability and surface roughness, potentiodynamic resistance to pitting corrosion in a solution of artificial urine and adhesion test. Based on these results, suitability/usefulness for use in urology of biodegradable PLCL polymer coating on CoCrMo alloy was assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, A., de Jongh, R., Mathye, Ch., Bhattu, A.S., Patel, H.: The first report of 3 forgotten encrusted double J stents in the same ureter: an endourology nightmare! Afr. J. Urol. 23, 224–227 (2017)

    Google Scholar 

  2. Basiaga, M., Kajzer, W., Walke, W., Kajzer, A., Kaczmarek, M.: Evaluation of physicochemical properties of surface modified Ti6Al4V and Ti6Al7Nb alloys used for orthopedic implants. Mater. Sci. Eng. C 68, 851–860 (2016)

    Google Scholar 

  3. Baysens, M., Tailly, T.O.: Ureteral stents in urolithiasis. Asian J. Urol. 5, 274–286 (2018)

    Google Scholar 

  4. Belfield, K., Chen, X., Smith, E.F., Ashraf, W., Bayston, R.: An antimicrobial impregnated urinary catheter that reduces mineral encrustation and prevents colonization by multi-drug resistant organisms for up to 12 weeks. Acta Biomater. 90, 157–168 (2019)

    Google Scholar 

  5. Bzoma, B., Kostro, J., Hellman, A., Chamienia, A., Hać, S., Dębska-Ślizień, A., Śledziński, Z.: Ureteric stenting in kidney transplant recipients, Gdansk Centre Experience, Poland. Transplant. Proc. 50, 1858–1862 (2018)

    Google Scholar 

  6. Fabian, K.M.: The intra-prostatic ‘partial catheter’ (urological spiral) II. Der Urologe 19(4), 236–238 (1980)

    Google Scholar 

  7. Forbes, C., Scotland, K.B., Lange, D., Chew, B.H.: Innovations in ureteral stent technology. Urol. Clin. N. Am. 46(2), 245–255 (2019)

    Google Scholar 

  8. Georglev, P., Bonl, Ch., Dahm, F., Maurus, Ch.F., Wlldl, S., Rousson, V., Wuthrich, R.P., Clavlen, P.-A., Weber, M.: Routine stenting reduces urologic complications as compared with stenting “on demand” in adult kidney transplantation. Urology 70, 893–897 (2007)

    Google Scholar 

  9. Hildebrandt, P., Sayyad, M., Rzany, A., Schaaldach, M., Seiter, H.: Prevention of surface encrustation of urological implants by coating with inhibitors. Biomaterials 22, 503–507 (2001)

    Google Scholar 

  10. Jaworska, J., Jelonek, K., Kajzer, W., Szewczenko, J., Kaczmarczyk, B., Marcinkowski, A., Janeczek, H., Pastusiak, M., Basiaga, M., Kasperczyk, J.: Comparison of biodegradable poly(glycolide- \(\varepsilon \)-caprolactone) and poly(glycolide-\(\varepsilon \)-caprolactone-D, L-lactide) coatings enriched with ciprofloxacin formed on Ti6Al4V alloy. Polym. Degrad. Stab. 155, 136–144 (2018)

    Google Scholar 

  11. Jaworska, J., Jelonek, K., Sobota, M., Kasperczyk, J., Dobrzynski, P., Musial-Kulik, M., Smola-Dmochowska, A., Janeczek, H., Jarzabek, B.: Shape-memory bioresorbable terpolymer composite with antirestenotic drug. J. Appl. Polym. Sci. 17, 132 (2015)

    Google Scholar 

  12. Jelonek, K., Kasperczyk, J.: Polyesters and polyester carbonates for controlled drug delivery. Part I. Polymers 58, 654–662 (2013)

    Google Scholar 

  13. Kajzer, W., Jaworska, J., Jelonek, K., Szewczenko, J., Kajzer, A., Nowińska, K., Hercog, A., Kaczmarek, M., Kasperczyk, J.: Odporność korozyjna stopu Ti6Al4V pokrytego biodegradowalnymi powłokami polimerowymi na bazie kaprolaktonu. Maint. Reliab. 20(1), 30–38 (2018)

    Google Scholar 

  14. Kajzer, W., Jaworska, J., Jelonek, K., Szewczenko, J., Nowińska, K., Kajzer, A.: Effect of sterilization and long-term exposure to artificial urine on corrosion behavior of metallic biomaterials with poly(glicolide-co-caprolactone) coatings. In: Gzik, M., Tkacz, Ew., Paszenda, Z., Piętka, E. (eds.) Innovations in Biomedical Engineering, pp. 391–398. Springer International Publishing, Cham (2018)

    Google Scholar 

  15. Kallidonis, P., Kotsiris, D., Sanguedolce, F., Natasiotis, P., Liatsikos, E., Papatsoris, A.: The effectiveness of ureteric metal stents in malignant ureteric obstruction: a systematic review. Arab J. Urol. 15, 280–288 (2017)

    Google Scholar 

  16. Kotsar, A., Nleminen, R., Isotalo, T., Mlkkonen, J., Uurto, I., Kellomaki, M., Talja, M., Mollanen, E., Tammela, T.L.J.: Biocompatibility of new drug-eluting biodegradable urethral stent materials. Urology 75, 229–234 (2010)

    Google Scholar 

  17. Liatsikos, E.N., Karnabatidis, D., Kagadis, G.C., Katsakiori, P.F., Stolzenburg, J.-U., Nikiforidis, G.C., Permenis, P., Siblis, D.: Metal stents in the urinary tract. EAU-EBU Update Ser. 5, 77–88 (2007)

    Google Scholar 

  18. Matiz, M.F.: Applications of synthetic polymers in clinical medicine. Biosurface Biotribology 1, 161–176 (2015)

    Google Scholar 

  19. Szewczenko, J., Kajzer, W., Grygiel-Pradelok, M., Jaworska, J., Jelonek, K., Nowińska, K., Gawliczek, M., Libera, M., Marcinkowski, A., Kasperczyk, J.: Corrosion resistance of PLGA-coated biomaterials. Acta Bioeng. Biomech. 19(1), 173–179 (2017)

    Google Scholar 

  20. Tao, G., Wu, G., Yang, L., Wang, F., Han, Ch., Liu, F., Yuan, J.: Fragmentation of severely encrusted ureteral stent indwelled for 4 years in a boy. Urol. Case Rep. 12, 1–3 (2017)

    Google Scholar 

  21. Tian, Q., Zhang, Ch., Deo, M., Rivera-Castaneda, L., Masoudipour, N., Guan, R., Liu, H.: Responses of human urothelial cells to magnesium-zinc-strontium alloys and associated insoluble degradation products for urological stent applications. Mater. Sci. Eng. C 96, 248–262 (2019)

    Google Scholar 

  22. Walke, W., Basiaga, M., Paszenda, Z., Kajzer, A., Kajzer, W., Pustelny, T., Drewniak, S., Opilski, Z., Jendruś, R., Szewczenko, J.: Influence of surface modification on physico-chemical properties of Ti6Al7Nb alloy. Surf. Coat. Technol. 307, 753–760 (2016)

    Google Scholar 

  23. Yang, L., Whiteside, S., Cadieux, P.A., Denstedt, J.D.: Ureteral stent technology: drug-eluting stents and stent coatings. Asian J. Urol. 2, 164–201 (2015)

    Google Scholar 

Download references

Acknowledgements

The work has been financed from research project no \(07/020/BK_19/0050\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Kajzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kajzer, W. et al. (2021). Study of Physicochemical Properties of CoCrMo Alloy with PLCL Polymer Coating Intended for Urology. In: Gzik, M., Paszenda, Z., Pietka, E., Tkacz, E., Milewski, K. (eds) Innovations in Biomedical Engineering. AAB 2020. Advances in Intelligent Systems and Computing, vol 1223. Springer, Cham. https://doi.org/10.1007/978-3-030-52180-6_28

Download citation

Publish with us

Policies and ethics