Skip to main content

Technology as a Support for Rehabilitation Patients After Stroke

  • Conference paper
  • First Online:
Innovations in Biomedical Engineering (AAB 2020)

Abstract

As a result of the constantly growing number of people in the World, disabilities became one of the most important aspects related to human health. According to the World Health Organization, a disabled person is “anyone who affects a reduction in performance or fitness in the construction or functioning of the body in terms of psychological, physical or anatomical.” On a global scale, the main cause of acquired motor disability is ischemic stroke. Therefore, it is essential to look for solutions that will help people with disabilities to rejoice as much independence and health as possible. For this purpose, the library databases of universities in Poland, units and scientific institutes from Poland, as well as the most popular databases—PubMed and Google Scholar were searched. As a result of the queries, 1057 records were obtained, which, according to the adopted criteria, only 24 were selected for further analysis. The main focus of the presented study was on issues related to supporting both diagnostics and therapy. Methods such as the use of basic devices for drainage and uprightization, walking trainers and multimodal platforms, biomechanical devices—exoskeletons and the use of virtual reality in the rehabilitation process were addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrade, K.D.O., Fernandes, G., Martins, J., Roma, V.C., Joaquim, R.C., Caurin, G.A.: Rehabilitation robotics and serious games: An initial architecture for simultaneous players. In 2013 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), 1-6 (2013)

    Google Scholar 

  2. Berg, K.O.,Wood-Dauphinee, S.L.,Williams, J.I.,Maki, B.:Measuring balance in the elderly: validation of an instrument. Canadian journal of public health - Revue canadienne de sante publique 83, 7–11 (1992)

    Google Scholar 

  3. Bortole, M.,Venkatakrishnan, A., Zhu, F., Moreno, J.C., Francisco,G.E., Pons, J.L., Contreras- Vidal, J.L.: The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Journal of neuroengineering and rehabilitation 12(1), 54 (2015)

    Google Scholar 

  4. Cho, S., Ku, J., Cho, Y.K., Kim, I.Y., Kang, Y.J., Jang, D.P., Kim, S.I.: Development of virtual reality proprioceptive rehabilitation system for stroke patients. Computer methods and programs in biomedicine 113(1), 258–265 (2013)

    Google Scholar 

  5. Dega, W., Milanowska, K.: Ortopedia i rehabilitacja we współczesnym ujciu. Ortopedia i rehabilitacja, Wyd. Lekarskie PZWL 9 (2003)

    Google Scholar 

  6. Drużbicki, M., Kwolek, A., Depa, A.: Pionizacja w procesie rehabilitacji chorych z objawami ogniskowego uszkodzenia ośrodkowego układu nerwowego-nowe możliwości aparaturowe. Wyd. UM. Rzeszów 1, 14–20 (2008)

    Google Scholar 

  7. Esquenazi, A., Talaty,M., Packel, A., Saulino, M.: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American journal of physical medicine & rehabilitation 91(11), 911–921 (2012)

    Google Scholar 

  8. Faria, A.L., Andrade, A., Soares, L., Badia, S.B.: Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. Journal of neuroengineering and rehabilitation 13(1), 96 (2016)

    Google Scholar 

  9. Fleerkotte, B.M.,Koopman, B., Buurke, J.H., vanAsseldonk, E.H., van derKooij, H., Rietman, J.S.: The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. Journal of neuroengineering and rehabilitation 11(1), 26 (2014)

    Google Scholar 

  10. Gamito, P., Oliveira, J., Coelho, C., Morais, D., Lopes, P., Pacheco, J., Barata, A.F.: Cognitive training on stroke patients via virtual reality-based serious games. Disability and rehabilitation39(4), 385–388 (2017)

    Google Scholar 

  11. Geerts, W.H., Pineo, G.F., Heit, J.A., Bergqvist, D., Lassen, M.R., Colwell, C.W., Ray, J.G.: Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126(3), 338–400 (2004)

    Google Scholar 

  12. Główny Urząd Statystyczny: Stan zdrowia ludności Polski w 2014 r (2014)

    Google Scholar 

  13. Jaworska, M., Tuzim, T., Starczyńska, M., Wilk-Frańczuk, M., Pedrycz, A.: Ocena wpływu rehabilitacji na zaburzenia równowagi u pacjentów po niedokrwiennym udarze mózgu z wykorzystaniem wybranych testów i skal. Polish Hyperbaric Research 2(51), 55–66 (2015)

    Google Scholar 

  14. Lukowicz, M., Kuczma, W., Hoffman, J.: Aktywna pionizacja pacjentów we wczesnej i rehabilitacji neurologicznej. Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna 14(3), 213–216 (2008)

    Google Scholar 

  15. Mace, M., Kinany, N., Rinne, P., Rayner, A., Bentley, P., Burdet, E.: Balancing the playing field: collaborative gaming for physical training. Journal of neuroengineering and rehabilitation 14(1), 116 (2017)

    Google Scholar 

  16. Michnik, R., Jurkojć, J., Rycerski, W.: Analiza zmian wybranych parametrów w badaniach stabilograficznych u pacjentów ze schorzeniami w obrębie kończyny dolnej przed i po rehabilitacji (2007)

    Google Scholar 

  17. Milanowska, K. (ed.).: Techniki pracy w terapii zajęciowej. Państ. Zakład Wydawnictw Lekarskich (1982)

    Google Scholar 

  18. Orzech, J.: Rozwój technik i metod fizjoterapii w okresie od 1801 do 2001 roku. Akademia Wychowania Fizycznego Im, Bronisława Czecha w Krakowie (2003)

    Google Scholar 

  19. Ozaki, K., Kondo, I., Hirano, S., Kagaya, H., Saitoh, E., Osawa, A., Fujinori, Y.: Training with a balance exercise assist robot is more effective than conventional training for frail older adults. Geriatrics and Gerontology International 17(11), 1982–1990 (2017)

    Google Scholar 

  20. Paiman, C., Lemus, D., Short, D., Vallery, H.: Observing the State of Balance with a Single Upper-Body Sensor. Frontiers in Robotics and AI 3, 11 (2016)

    Google Scholar 

  21. Piron, L., Turolla, A., Agostini, M., Zucconi, C.S., Ventura, L., Tonin, P., Dam, M.: Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabilitation and Neural Repair 24(6), 501–508 (2010)

    Google Scholar 

  22. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at - home rehabilitation. Robotics and Autonomous Systems 73, 135–143 (2015)

    Google Scholar 

  23. Rocchi, L., Chiari, L., Cappello, A.: Feature selection of stabilometric parameters based on principal component analysis.Medical and Biological Engineering and Computing 42(1), 71–79 (2004)

    Google Scholar 

  24. Saposnik, G., Cohen, L.G., Mamdani, M., Pooyania, S., Ploughman, M., Cheung, D., Nilanont, Y.: Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. The Lancet Neurology 15(10), 1019–1027 (2016)

    Google Scholar 

  25. Sessoms, P.H., Gottshall, K.R., Collins, J.D., Markham, A.E., Service, K.A., Reini, S.A.: Improvements in gait speed and weight shift of persons with traumatic brain injury and vestibular dysfunction using a virtual reality computer-assisted rehabilitation environment. Military medicine 180(suppl_3), 143–149 (2015)

    Google Scholar 

  26. Shirota, C., Van Asseldonk, E., Matjacić, Z., Vallery, H., Barralon, P., Maggioni, S., Veneman, J.F.: Robot-supported assessment of balance in standing and walking. Journal of neuroengineering and rehabilitation 14(1), 80 (2017)

    Google Scholar 

  27. Vlutters, M., Van Asseldonk, E.H., Van der Kooij, H.: Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking. Journal of experimental biology 219(10), 1514–1523 (2016)

    Google Scholar 

  28. Wojtyniak, B.: Sytuacja zdrowotna ludności Polski. Goryński, P. (ed.). Warszawa: Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny (2008)

    Google Scholar 

  29. World Health Organizations (1980)

    Google Scholar 

  30. World Health Organization.: The top 10 causes of death (2014)

    Google Scholar 

  31. Wiszomirska, I., Kaczmarczyk, K., Zdrodowska, A., Blażkiewicz, M., Ilnicka, L., Marciniak, T.: Evaluation of static and dynamic postural stability in young, elderly and with vision loss women. Advances in Rehabilitation 27(3), 29–35 (2013)

    Google Scholar 

  32. Yoshimoto, T., Shimizu, I., Hiroi, Y., Kawaki, M., Sato, D., Nagasawa, M.: Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control. International Journal of Rehabilitation Research 38(4), 338–343 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Kania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kania, D. et al. (2021). Technology as a Support for Rehabilitation Patients After Stroke. In: Gzik, M., Paszenda, Z., Pietka, E., Tkacz, E., Milewski, K. (eds) Innovations in Biomedical Engineering. AAB 2020. Advances in Intelligent Systems and Computing, vol 1223. Springer, Cham. https://doi.org/10.1007/978-3-030-52180-6_24

Download citation

Publish with us

Policies and ethics