Skip to main content

Temperature Sensors

  • Chapter
  • 5800 Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Techniques that are used to measure the temperature of the atmosphere include liquid-in-glass thermometers, electrical thermometers, bimetallic thermometers, and the most commonly used instruments: resistance thermometers. Radiation shields and ventilation are important for minimizing erroneous results. Fine-wire thermometers and sonic temperature measurement are important techniques for turbulence measurements. In addition to providing technical data, this chapter describes maintenance requirements and quality control and calibration methods for temperature sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • F. Albrecht: Thermometer zur Messung der wahren Temperatur, Meteorol. Z. 24, 420–424 (1927)

    Google Scholar 

  • M.L. Salby: Physics of the Atmosphere and Climate (Cambridge Univ. Press, Cambridge 2012)

    Book  Google Scholar 

  • D.L. Hartmann: Global Physical Climatology, 2nd edn. (Elsevier, Amsterdam 2016)

    Google Scholar 

  • H. Preston-Thomas: The international temperature scale of 1990 (ITS-90), Metrologia 27, 3–10 (1990)

    Article  Google Scholar 

  • WMO: Guide to Meteorological Instruments and Methods of Observation, WMO, Vol. 8 (World Meteorological Organization, Geneva 2014), update 2017

    Google Scholar 

  • N. Mölders, G. Kramm: Lectures in Meteorology (Springer, Cham, Heidelberg, New York, Dordrecht, London 2014)

    Book  Google Scholar 

  • T. Foken: Micrometeorology, 2nd edn. (Springer, Berlin, Heidelberg 2017)

    Book  Google Scholar 

  • J.C. Kaimal, J.A. Businger: A continuous wave sonic anemometer-thermometer, J. Clim. Appl. Meteorol. 2, 156–164 (1963)

    Article  Google Scholar 

  • J.C. Kaimal, J.E. Gaynor: Another look to sonic thermometry, Bound.-Layer Meteorol. 56, 401–410 (1991)

    Article  Google Scholar 

  • G. Jendritzky, R. de Dear, G. Havenith: UTCI—why another thermal index?, Int. J. Biometeorol. 56, 421–428 (2012)

    Article  Google Scholar 

  • R. Osczevski, M. Bluestein: The new wind chill equivalent temperature chart, Bull. Am. Meteorol. Soc. 86, 1453–1458 (2005)

    Article  Google Scholar 

  • W.E.K. Middleton: A History of the Thermometer and Its Use in Meteorology (John Hopkins Press, Baltimore 1968)

    Google Scholar 

  • H.-G. Körber: Vom Wetteraberglauben zur Wetterforschung (Edition Leipzig, Leipzig 1987)

    Google Scholar 

  • R. Holland, G. Stöhr: Thermometer, Skalen und deren Väter (Freunde alter Wetterinstrumente, Riedlingen 2013)

    Google Scholar 

  • W.E.K. Middleton: Invention of the Meteorological Instruments (Johns Hopkins Press, Baltimore 1969)

    Google Scholar 

  • Accademia Del Cimento: Saggi Di Naturali Esperienze Fatte Nell' (1666). In: Neudrucke von Schriften und Karten über Meteorologie und Erdmagnetismus, Vol. 7, ed. by G. Hellmann (1904) p. 278, Berlin 1893–1904

    Google Scholar 

  • F.V. Brock, S.J. Richardson: Meteorological Measurement Systems (Oxford Univ. Press, New York 2001)

    Book  Google Scholar 

  • G.R. Harrison: Meteorological Measurements and Instrumentation (John Wiley & Sons, Chichester 2015)

    Google Scholar 

  • EU: Commission Regulation (EU) No 847/2012 of 19 September 2012 Amending Annex XVII to regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards mercury, Off. J. Eur. Union L 253, 1–4 (2012)

    Google Scholar 

  • UNEP: The Minamata Convention on Mercury 2014)

    Google Scholar 

  • DIN-EN: Industrial Platinum Resistance Thermometers and Platinum Temperature Sensors [Industrielle Platin-Widerstandsthermometer und Platin Sensoren] (Beuth, Berlin 2009), IEC 60751:2008, DIN-EN 60751

    Google Scholar 

  • IEC: Industrial Platinum Resistance Thermometer, Edition 2.0 (International Electrotechnical Commission, Geneva 2008), IEC 60751

    Google Scholar 

  • H. Reuter: Bestimmung des spezifischen Widerstandes von Platin in Abhängigkeit von der Drahtdicke, als Beitrag zur Kenntnis der freien Weglänge der Leitungselektronen, Ann. Phys. 422, 494–504 (1937)

    Article  Google Scholar 

  • R. Nossek: Der Einfluss der Grenzflächen auf die Eigenschaften der Metalle, Anomalien dünner Schichten. In: Leitungsmechanismus und Energieumwandlung in Festkörpern, ed. by E. Justi (Vandenhoek & Ruprecht, Göttingen 1965) pp. 67–76

    Google Scholar 

  • S.I. Kretschmer: Metodika izmerenija mikropulsacii skorosti vetra i temperatura v atmosfere [A method to measure the fluctuations of the wind velocity and the temperature], Trudy Geofiz. Inst. AN SSSR 24(151), 43–111 (1954)

    Google Scholar 

  • L.R. Tsvang: Izmerenija tschastotnych spektrov temperaturnych pulsacij v prizemnom sloe atmosfery [Measurement of the spectra of the temperature fluctuations in the near surface layer of the atmosphere], Izv. AN SSSR Ser. Geofiz. 10, 1252–1262 (1960)

    Google Scholar 

  • T. Foken: Temperaturmessung mit dünnen Platindrähten, Z. Meteorol. 29, 299–307 (1979)

    Google Scholar 

  • A. Ziermann: Die richtige Bemessung der Widerstände einer zweckgebundenen Wheatstone'schen Brücke, Teil I–V, Arch. Tech. Mess. Lfg 389–393, 129–220 (1968)

    Google Scholar 

  • J. Rink: Thermistore und ihre Anwendung in der Meteorologie, Abh. Meteorol. Hydrol. Dienstes DDR 63, 58 (1961)

    Google Scholar 

  • C.R. Droms: Thermistors for temperature measurements. In: Temperature: Its Measurement and Control in Science and Industry, Vol. 3, ed. by J.F. Schooley (Instrument Society of America, New York 1962) pp. 139–146, Part 2

    Google Scholar 

  • J.M. Blonquist Jr., B. Bugbee: Air temperature. In: Agroclimatology: Linking Agriculture to Climate, Agronomy Monographs, Vol. 60, ed. by J.L. Hatfield, M.V.K. Sivakumar, J.H. Prueger (American Society of Agronomy, Madison 2018) pp. 51–72

    Google Scholar 

  • J.S. Steinhart, S.R. Hart: Calibration curves for thermistors, Deep Sea Res. Oceanogr. Abstr. 15, 497–503 (1968)

    Article  Google Scholar 

  • G.W. Burns, M.G. Scroger, G.F. Strouse, M.C. Croarkin, W.F. Guthrie: Temperature-electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90, Natl. Inst. Stand. Technol. Monogr. 175, 630 (1993)

    Google Scholar 

  • DIN-EN: Temperature – Electromotive Force (EMF) Tables for Pure-Element Thermocouple Combinations (IEC 62460:2008) [Temperatur – Tabellen der Elektromotorischen Kraft (EMK) für Kombinationen von Reinelement-Thermoelementen, EN 62460:2008] (Beuth, Berlin 2009)

    Google Scholar 

  • T. Hanafusa, T. Fujitana, Y. Kobori, Y. Mitsuta: A new type sonic anemometer-thermometer for field operation, Pap. Meteorol. Geophys. 33, 1–19 (1982)

    Article  Google Scholar 

  • B.G. van der Hegge Zijnen: Modified correlation formulae for heat transfer by natural and by forced convection from horizontal cylinders, Appl. Sci. Res. A6, 129–140 (1956)

    Article  Google Scholar 

  • A.F.G. Jacobs, K.G. McNaughton: The excess temperature of a rigid fast-response thermometer and its effects on measured heat fluxes, J. Atmos. Ocean. Technol. 11, 680–686 (1994)

    Article  Google Scholar 

  • S.J. Richardson, F.V. Brock, S.R. Semmer, C. Jirak: Minimizing errors associated with multiplate radiation shields, J. Atmos. Ocean. Technol. 16, 1862–1872 (1999)

    Article  Google Scholar 

  • W.R. Sparks: The Effect of Thermometer Screen Design on the Observed Temperature, WMO, Vol. 315 (World Meteorological Organization, Geneva 1972)

    Google Scholar 

  • E. Erell, V. Leal, E. Maldonado: Measurement of air temperature in the presence of a large radiant flux: an assessment of passively ventilated thermometer screens, Bound.-Layer Meteorol. 114, 205–231 (2005)

    Article  Google Scholar 

  • D. Bryant: An investigation into the response of thermometer screens – the effect of wind speed on the lag time, Meteorol. Mag. 97(256), 183–186 (1968)

    Google Scholar 

  • R.G. Harrison: Lag-time effects on a naturally ventilated large thermometer screen, Q.J.R. Meteorol. Soc. 137, 402–408 (2011)

    Article  Google Scholar 

  • G. Speckbrock, S. Kamitz, M. Alt, H. Schmitt: Clinical Thermometer, Patent (1996)

    Google Scholar 

  • BS: Meteorological Thermometers, British Standard, Vol. 692, 2nd edn. (British Standards Institution, London 1958), Revision

    Google Scholar 

  • VDI: Umweltmeteorologie, Meteorologische Messungen, Lufttemperatur [Environmental Meteorology, Meteorological Measurements, Air Temperature] (Beuth, Berlin 2012), VDI 3786 Blatt 3 (Part 3)

    Google Scholar 

  • A. Merlone, F. Sanna, G. Beges, S. Bell, G. Beltramino, J. Bojkovski, M. Brunet, D. del Campo, A. Castrillo, N. Chiodo, M. Colli, G. Coppa, R. Cuccaro, M. Dobre, J. Drnovsek, V. Ebert, V. Fernicola, A. Garcia-Benadí, C. Garcia-Izquierdo, T. Gardiner, E. Georgin, A. Gonzalez, D. Groselj, M. Heinonen, S. Hernandez, R. Högström, D. Hudoklin, M. Kalemci, A. Kowal, L. Lanza, P. Miao, C. Musacchio, J. Nielsen, M. Nogueras-Cervera, S.O. Aytekin, P. Pavlasek, M. d. Podesta, M.K. Rasmussen, J. del-Río-Fernández, L. Rosso, H. Sairanen, J. Salminen, D. Sestan, L. Šindelářová, D. Smorgon, F. Sparasci, R. Strnad, R. Underwood, A. Uytun, M. Voldan: The Meteomet2 project—highlights and results, Meas. Sci. Technol. 29, 025802 (2018)

    Article  Google Scholar 

  • R.G. Harrison, M.A. Pedder: Fine wire thermometer for air temperature measurement, Rev. Sci. Instrum. 72, 1539–1541 (2001)

    Article  Google Scholar 

  • E. von Angerer, H. Ebert: Technische Kunstgriffe der physikalischen Untersuchungen (B. G. Teubner, Leipzig 1964)

    Google Scholar 

  • ISO: Meteorology—Air Temperature Measurements—Test Methods for Comparing the Performance of Thermometer Shields/Screens and Defining Important Characteristics (International Organization for Standardization, Geneva 2007), ISO 17714:2007

    Google Scholar 

  • R.G. Harrison, S.D. Burt: Quantifying uncertainties in climate data: measurement limitations of naturally ventilated thermometer screens. Environ. Res. Commun. 3:1–10 (2021)

    Google Scholar 

  • L.G. Sotelino, N. De Coster, P. Beirinckx, P. Peeters: Intercomparison of Shelters in the RMI AWS Network. (WMO-CIMO, P1_26, Geneva, 2018)

    Google Scholar 

  • E. Frankenberger: Untersuchungen über den Vertikalaustausch in den unteren Dekametern der Atmosphäre, Ann. Meteorol. 4, 358–374 (1951)

    Google Scholar 

  • R.G. Wylie, T. Lalas: Measurement of Temperature and Humidity, WMO Techn. Note 194, 77 (1992)

    Google Scholar 

  • L.F. Kämtz: Lehrbuch der Meteorologie (Gebauersche Buchhandlung, Halle 1831)

    Google Scholar 

  • F. Kaspar, L. Hannak: Zur Auswirkung der Automatisierung der Temperaturmessungen auf die Messreihen des Deutschen Wetterdienstes, Mitt. DMG 2, 8–9 (2016)

    Google Scholar 

  • T. Foken, J. Lüers, G. Aas, M. Lauerer: Unser Klima – Im Garten, Im Wandel (Ökologisch-Botanischer Garten der Universität Bayreuth, Bayreuth 2016)

    Google Scholar 

Download references

Acknowledgements

We acknowledge Mr. Kobrle, several companies, and the German Thermometer Museum for allowing us to use their photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Foken, T., Bange, J. (2021). Temperature Sensors. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_7

Download citation

Publish with us

Policies and ethics