Skip to main content

Soil Measurements

  • Chapter
  • 5757 Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Atmosphere and soil are intensively coupled and interlinked in manifold aspects. The most relevant interfaces are the very soil surface, where water is stored and water fluxes are split into evaporation, runoff and infiltration, and the soil–root system, which controls transpiration. Hence, important topics are surface properties like roughness, wettability, sealing and crusting, water storage, water availability for plant roots, water retention, and conductivity characteristics of the subsurface soil. In this chapter, we give an overview of soil hydraulic measurements and analyses with relevance for the soil–plant–atmosphere system that have been used in the past and are still of high relevance in the context of ecosystem research. More specifically, we focus on devices and procedures that are fundamental for soil systems and highlight recent developments. We close this chapter with an outline of promising future developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Soil Science Division Staff: Soil Survey Manual (USDA, Washington 2018)

    Google Scholar 

  • D. Hillel: Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations (Academic Press, Waltham 1998)

    Google Scholar 

  • D.A. De Vries: Thermal properties of soils. In: Physics of Plant Environment, ed. by W.R. Van Wijk (North-Holland Publishing Company, Amsterdam 1963) pp. 210–235

    Google Scholar 

  • H.-P. Blume, G.W. Brümmer, H. Fleige, R. Horn, E. Kandeler, I. Kögel-Knabner, R. Kretzschmar, K. Stahr, B.-M. Wilke: Scheffer/Schachtschabel – Soil Science (Springer, Berlin, Heidelberg 2016)

    Google Scholar 

  • A.R. Mermut, S.H. Luk, M.J.M. Römkens, J.W.A. Poesen: Micromorphological and mineralogical components of surface sealing in loess soils from different geographic regions, Geoderma 66(1/2), 71–84 (1995)

    Google Scholar 

  • S.H. Luk, Q.G. Cai: Laboratory experiments on crust development and rainsplash erosion of loess soils, China, Catena 17(3), 261–276 (1990)

    Google Scholar 

  • W. Durner, U. Jansen, S.C. Iden: Effective hydraulic properties of layered soils at the lysimeter scale determined by inverse modelling, Eur. J. Soil Sci. 59(1), 114–124 (2008)

    Google Scholar 

  • C. Liebethal, B. Huwe, T. Foken: Sensitivity analysis for two ground heat flux calculation approaches, Agric. For. Meteorol. 132(3/4), 253–262 (2005)

    Google Scholar 

  • R. Eggelsmann: Dränanleitung für Landbau, Ingenieurbau und Landschaftsbau (Paul Parey, Hamburg, Berlin 1981)

    Google Scholar 

  • H. Darcy: Les fontaines publiques de la ville de Dijon: Exposition et application (Victor Dalmont, Paris 1856)

    Google Scholar 

  • E. Buckingham: Studies on the Movement of Soil Moisture (USDA, Washington 1907), Bulletin No. 38

    Google Scholar 

  • L.A. Richards: Capillary conduction of liquids through porous mediums, Physics 1(5), 318–333 (1931)

    Google Scholar 

  • W.H. Green, G.A. Ampt: Studies on Soil Phyics, J. Agric. Sci. 4(1), 1–24 (1911)

    Google Scholar 

  • L.F. Ernst: Een nieuwe formule voor de berekening van de doorlaatfactor met de boorgatenmethode (En Bodemkundig Inst. TNO, Groningen 1950), Rap. Landbouwproefsta

    Google Scholar 

  • J.R. Philip: Theory of infiltration, Adv. Hydrosci. 5, 215–296 (1969)

    Google Scholar 

  • J.-Y. Parlange, I. Lisle, R.D. Braddock, R.E. Smith: The three-parameter infiltration equation, Soil Sci. 133(6), 337–341 (1982)

    Google Scholar 

  • J.-Y. Parlange, R. Haverkamp, J. Touma: Infiltration under ponded conditions: 1. Optimal analytical solution and comparison with experimental observations, Soil Sci. 139(4), 305–311 (1985)

    Google Scholar 

  • D. Kirkham, W.L. Powers: Advanced Soil Physics (Wiley, New York 1972)

    Google Scholar 

  • R.M. Hagan, H.R. Haise, T.W. Edminster (Eds.): Irrigation of Agricultural Lands, Agronomy Monograph, Vol. 11 (ASA, Madison 1967)

    Google Scholar 

  • J. van Schilfgaarde (Ed.): Drainage for Agriculture, Agronomy Monograph, Vol. 17 (ASA, Madison 1974)

    Google Scholar 

  • R.R. van der Ploeg, M. Marquardt, D. Kirkham: On the history of the ellipse equation for soil drainage, Soil Sci. Soc. Am. J. 61(6), 1604–1606 (1997)

    Google Scholar 

  • R.R. Van der Ploeg, M. Marquardt, M.B. Kirkham: The Colding equation for soil drainage: Its origin, evolution, and use, Soil Sci. Soc. Am. J. 63(1), 33–39 (1999)

    Google Scholar 

  • H.-J. Vogel, K. Roth: Quantitative morphology and network representation of soil pore structure, Adv. Water Resour. 24(3/4), 233–242 (2001)

    Google Scholar 

  • H.-J. Vogel, U. Weller, S. Schlüter: Quantification of soil structure based on Minkowski functions, Comput. Geosci. 36(10), 1236–1245 (2010)

    Google Scholar 

  • A. Carminati, A.B. Moradi, D. Vetterlein, P. Vontobel, E. Lehmann, U. Weller, H.-J. Vogel, S.E. Oswald: Dynamics of soil water content in the rhizosphere, Plant Soil 332(1/2), 163–176 (2010)

    Google Scholar 

  • A. Carminati, C.L. Schneider, A.B. Moradi, M. Zarebanadkouki, D. Vetterlein, H.-J. Vogel, A. Hildebrandt, U. Weller, L. Schüler, S.E. Oswald: How the rhizosphere may favor water availability to roots, Vadose Zone J. 10(3), 988–998 (2011)

    Google Scholar 

  • O. Ippisch: Contributions to the Large-Scale Simulation of Flow and Transport in Heterogeneous Porous Media, Habilitation Thesis (IWR, Clausthal-Zellerfeld 2014)

    Google Scholar 

  • J. Winter, O. Ippisch, H.-J. Vogel: Dynamic processes in capillary fringes, Vadose Zone J. 14(5), 1–2 (2015)

    Google Scholar 

  • B. Schultze, O. Ippisch, B. Huwe, W. Durner: Dynamic nonequilibrium during unsaturated water flow. In: Proc. Int. Workshop Charact. Meas. Hydraul. Prop. Unsatur. Porous Media, ed. by M.T. van Genuchten, F.J. Leij, L. Wu (USDA, Riverside 1999) pp. 877–892

    Google Scholar 

  • C. Bogner, B. Aufgebauer, O. Archner, B. Huwe: Dynamics of water flow in a forest soil: Visualization and modelling. In: Energy and Matter Fluxes of a Spruce Forest Ecosystem, Ecological Studies, Vol. 229, ed. by T. Foken (Springer, Cham 2017) pp. 137–156

    Google Scholar 

  • M. Schlather, B. Huwe: A risk index for characterising flow pattern in soils using dye tracer distributions, J. Contam. Hydrol. 79(1/2), 25–44 (2005)

    Google Scholar 

  • C. Bogner, B. Wolf, M. Schlather, B. Huwe: Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics, Eur. J. Soil Sci. 59(1), 103–113 (2008)

    Google Scholar 

  • R. Plagge, G. Scheffler, J. Grunewald, M. Funk: On the hysteresis in moisture storage and conductivity measured by the instantaneous profile method, J. Build. Phys. 29(3), 247–259 (2006)

    Google Scholar 

  • K. Beven, P. Germann: Macropores and water flow in soils, Water Resour. Res. 18(5), 1311–1325 (1982)

    Google Scholar 

  • P.F. Germann, K. Beven: Kinematic wave approximation to infiltration into soils with sorbing macropores, Water Resour. Res. 21(7), 990–996 (1985)

    Google Scholar 

  • P.F. Germann: Preferential Flow. Stokes Approach to Infiltation and Drainage (Geographica Bernensia, Bern 2014)

    Google Scholar 

  • M. Flury, H. Flühler: Tracer characteristics of brilliant blue FCF, Soil Sci. Soc. Am. J. 59(1), 22–27 (1995)

    Google Scholar 

  • M. Weiler, H. Flühler: Inferring flow types from dye patterns in macroporous soils, Geoderma 120(1/2), 137–153 (2004)

    Google Scholar 

  • C. Bogner, A. Kühnel, B. Huwe: Predicting with limited data – Increasing the accuracy in vis-nir diffuse reflectance spectroscopy by smote. In: 6th Workshop Hyperspectr. Image Signal Process. Evol. Remote Sens. (WHISPERS), Lausanne (2014) pp. 1–4, https://doi.org/10.1109/WHISPERS.2014.8077584

    Chapter  Google Scholar 

  • A. Kühnel, C. Bogner: In-situ prediction of soil organic carbon by vis–NIR spectroscopy: An efficient use of limited field data, Eur. J. Soil Sci. 68(5), 689–702 (2017)

    Google Scholar 

  • T.J. Sauer, R. Horton: Soil heat flux. In: Micrometeorology in Agricultural Systems, Agronomy Monograph, Vol. 47, ed. by J.L. Hatfield, J.M. Baker (ASA, CSSA, SSSA, Madison 2005) pp. 131–154

    Google Scholar 

  • J.B. Stewart, A.S. Thom: Energy budgets in pine forest, Q. J. R. Meteorol. Soc. 99(419), 154–170 (1973)

    Google Scholar 

  • T.J. Sauer: Heat flux density. In: Methods of Soil Analysis: Part 4 Physical Methods, SSSA Book Series, (SSSA, Madison 2002) pp. 1233–1248

    Google Scholar 

  • W. Greiner: Theoretische Physik (Harri Deutsch, Thun, Frankfurt a. M. 1981)

    Google Scholar 

  • T. Foken: Micrometeorology, 2nd edn. (Springer, Berlin, Heidelberg 2017)

    Google Scholar 

  • K. Yang, J. Wang: A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data, Sci. China Ser. D 51(5), 721–729 (2008)

    Google Scholar 

  • C. Liebethal, T. Foken: Evaluation of six parameterization approaches for the ground heat flux, Theor. Appl. Climatol. 88(1/2), 43–56 (2007)

    Google Scholar 

  • Z. Gao, E.S. Russell, J.E.C. Missik, M. Huang, X. Chen, C.E. Strickland, R. Clayton, E. Arntzen, Y. Ma, H. Liu: A novel approach to evaluate soil heat flux calculation: An analytical review of nine methods, J. Geophys. Res. Atmos. 122(13), 6934–6949 (2017)

    Google Scholar 

  • R. Horton, P.J. Wierenga, D.R. Nielsen: Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface, Soil Sci. Soc. Am. J. 47(1), 25–32 (1983)

    Google Scholar 

  • A.K. Blackadar: Modeling the nocturnal boundary layer. In: Third Symp. Atmos. Turbul. Diffus. Air Qual., Raleigh (AMS, Boston 1976)

    Google Scholar 

  • R.B. Stull: An Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht, Boston, London 1988)

    Google Scholar 

  • W.K.P. Van Loon, H.M.H. Bastings, E.J. Moors: Calibration of soil heat flux sensors, Agric. For. Meteorol. 92(1), 1–8 (1998)

    Google Scholar 

  • J.R. Philip: The theory of heat flux meters, J. Geophys. Res. 66(2), 571–579 (1961)

    Google Scholar 

  • V.O. Morgensen: The calibration factor of heat flux meters in relation to the thermal conductivity of the surrounding medium, Agric. Meteorol. 7, 401–410 (1970)

    Google Scholar 

  • M. Fuchs: Heat flux. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, SSSA Book Series, ed. by A. Klute (SSSA, ASA, Madison 1986) pp. 957–968

    Google Scholar 

  • T.J. Sauer, D.W. Meek, T.E. Ochsner, A.R. Harris, R. Horton: Errors in heat flux measurement by flux plates of contrasting design and thermal conductivity, Vadose Zone J. 2(4), 580–588 (2003)

    Google Scholar 

  • K.R. Douglas-Mankin, R. Srinivasan, J.G. Arnold: Soil and water assessment tool (SWAT) model: Current developments and applications, Transactions ASABE 53(5), 1423–1431 (2010)

    Google Scholar 

  • A.N. Kostiakov: On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of amelioration, Trans. Sixth Comm. Int. Soc. Soil Sci. 1, 17–21 (1932), in Russian

    Google Scholar 

  • R.E. Horton: The infiltration-theory of surface-runoff, Eos 21(2), 541 (1940)

    Google Scholar 

  • M.J.M. Römkens, S.N. Prasad, J.Y. Parlange: Surface seal development in relation to rainstorm intensity. In: Soil Erosion: Experiments and Models, Catena Supplement, Vol. 17, ed. by R.B. Bryan (Catena Verlag, Cremlingen 1990) pp. 1–11

    Google Scholar 

  • S.C. Chiang, D.E. Radcliffe, W.P. Miller: Comparison of seal hydraulic properties between Ultisols and Alfisols/Mollisols. In: Soil Surface Sealing and Crusting, Catena Supplement, Vol. 24, ed. by J.W.A. Poesen, M.A. Nearing (Catena Verlag, Cremlingen 1993) pp. 47–54

    Google Scholar 

  • C. Bogner, M. Mirzaei, S. Ruy, B. Huwe: Microtopography, water storage and flow patterns in a fine-textured soil under agricultural use, Hydrol. Process. 27(12), 1797–1806 (2013)

    Google Scholar 

  • S. Arnhold: Soil Erosion and Conservation – Potential of Row Crop Farming in Mountainous Landscapes of South Korea, Ph.D. thesis (Univ. Bayreuth, Bayreuth 2013)

    Google Scholar 

  • S. Arnhold, M. Ruidisch, S. Bartsch, C.L. Shope, B. Huwe: Simulation of runoff patterns and soil erosion on mountainous farmland with and without plastic-covered ridge-furrow cultivation in South Korea, Transactions ASABE 56(2), 667–679 (2013)

    Google Scholar 

  • W.T. Pinson, D.C. Yoder, J.R. Buchanan, W.C. Wright, J.B. Wilkerson: Design and evaluation of an improved flow divider for sampling runoff plots, Appl. Eng. Agric. 20(4), 433 (2004)

    Google Scholar 

  • C.A. Bonilla, D.G. Kroll, J.M. Norman, D.C. Yoder, C.C. Molling, P.S. Miller, J.C. Panuska, J.B. Topel, P.L. Wakeman, K.G. Karthikeyan: Instrumentation for measuring runoff, sediment, and chemical losses from agricultural fields, J. Environ. Qual. 35(1), 216–223 (2006)

    Google Scholar 

  • R.P.C. Morgan: Soil Erosion and Conservation (Wiley-Blackwell, Oxford, Malden 2005)

    Google Scholar 

  • M. Ruidisch, S. Arnhold, B. Huwe, C. Bogner: Is ridge cultivation sustainable? A case study from the Haean catchment, South Korea, Appl. Environ. Soil Sci. 2013, ID 679467 (2013)

    Google Scholar 

  • W.G. Teixeira, F.L. Sinclair, B. Huwe, G. Schroth: Soil water. In: Trees, Crops and Soil Fertility: Concepts and Research Methods, ed. by G. Schroth, F.L. Sinclair (CABI Publishing, Cambridge, MA 2003) pp. 209–234

    Google Scholar 

  • D.A. Robinson, C.S. Campbell, J.W. Hopmans, B.K. Hornbuckle, S.B. Jones, R. Knight, F. Ogden, J. Selker, O. Wendroth: Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review, Vadose Zone J. 7(1), 358–389 (2008)

    Google Scholar 

  • C.H.M. Van Bavel: Neutron scattering measurement of soil moisture: Development and current status. In: Humidity and Moisture, Int. Symp. Humidity Moisture, Vol. 4, ed. by P.N. Winn Jr. (Reinhold, New York 1965) pp. 171–184

    Google Scholar 

  • J.W. Holmes: Calibration and field use of the neutron scattering method of measuring soil water content, Aust. J. Appl. Sci. 7(1), 45–58 (1956)

    Google Scholar 

  • C.G. Gurr: Use of gamma rays in measuring water content and permeability in unsaturated columns of soil, Soil Sci. 94(4), 224–229 (1962)

    Google Scholar 

  • H. Ferguson, W.H. Gardner: Water content measurement in soil columns by gamma ray absorption, Soil Sci. Soc. Am. J. 26(1), 11–14 (1962)

    Google Scholar 

  • J.A. Vomocil: In situ measurement of bulk density of soil by gamma-ray absorption technique, Soil Sci. 77(4), 341–342 (1954)

    Google Scholar 

  • C.H.M. Van Bavel, R.J. Lascano, J.M. Baker: Calibrating two-probe, gamma-gauge densitometers, Soil Sci. 140(5), 393–395 (1985)

    Google Scholar 

  • G.C. Topp, J.L. Davis: Time-domain reflectometry (TDR) and its application to irrigation scheduling. In: Advances in Irrigation, Vol. 3, ed. by D. Hillel (Academic Press, Orlando 1985) pp. 107–127

    Google Scholar 

  • L.W. Petersen, A. Thomsen, P. Moldrup, O.H. Jacobsen, D.E. Rolston: High-resolution time domain reflectometry: Sensitivity dependency on probe-design, Soil Sci. 159(3), 149–154 (1995)

    Google Scholar 

  • G.C. Topp, J.L. Davis, A.P. Annan: Electromagnetic determination of soil water content: Measurements in coaxial transmission lines, Water Resour. Res. 16(3), 574–582 (1980)

    Google Scholar 

  • M.A. Malicki, R. Plagge, C.H. Roth: Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil, Eur. J. Soil Sci. 47(3), 357–366 (1996)

    Google Scholar 

  • K. Roth, R. Schulin, H. Flühler, W. Attinger: Calibration of time domain reflectometry for water content measurement using a composite dielectric approach, Water Resour. Res. 26(10), 2267–2273 (1990)

    Google Scholar 

  • A.M. Weitz, W.T. Grauel, M. Keller, E. Veldkamp: Calibration of time domain reflectometry technique using undisturbed soil samples from humid tropical soils of volcanic origin, Water Resour. Res. 33(6), 1241–1249 (1997)

    Google Scholar 

  • M.G. Pelletier, R.C. Schwartz, G.A. Holt, J.D. Wanjura, T.R. Green: Frequency domain probe design for high frequency sensing of soil moisture, Agriculture 6(4), 60–72 (2016)

    Google Scholar 

  • S.D. Logsdon: Experimental limitations of time domain reflectometry hardware for dispersive soils, Soil Sci. Soc. Am. J. 70(2), 537–540 (2006)

    Google Scholar 

  • S.B. Jones, D. Or: Frequency domain analysis for extending time domain reflectometry water content measurement in highly saline soils, Soil Sci. Soc. Am. J. 68(5), 1568–1577 (2004)

    Google Scholar 

  • G.J. Gaskin, J.D. Miller: Measurement of soil water content using a simplified impedance measuring technique, J. Agric. Eng. Res. 63(2), 153–159 (1996)

    Google Scholar 

  • M.S. Borhan, L.R. Parsons: Monitoring of soil water content in a citrus grove using capacitance ECH2O probes. In: ASAE Annu. Meet, Paper No. 042110 (ASABE, St. Joseph 2004), https://doi.org/10.13031/2013.16383

    Chapter  Google Scholar 

  • M. Inoue, B.A. Ould Ahmed, T. Saito, M. Irshad: Comparison of twelve dielectric moisture probes for soil water measurement under saline conditions, Am. J. Environ. Sci. 4(4), 367–372 (2008)

    Google Scholar 

  • G.S. Campbell, G.W. Gee: Water potential: Miscellaneous methods. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Agronomy Monograph, Vol. 9 (SSSA, ASA, Madison 1986) pp. 619–633

    Google Scholar 

  • C.B. Tanner, R.J. Hanks: Moisture hysteresis in gypsum moisture blocks, Soil Sci. Soc. Am. J. 16(1), 48–51 (1952)

    Google Scholar 

  • UP Umweltanalytische Produkte GmbH: pF-Meter zur Bestimmung der Saugspannung bis > 14.000 hPa, https://www.upgmbh.com/fileadmin/produkte/pdf/10850_pF_Meter.pdf (2013), Accessed 24 July 2021

  • N. Lu, W.J. Likos: Unsaturated Soil Mechanics (Wiley, Hoboken 2004)

    Google Scholar 

  • Ł. Guz, D. Majerek, H. Sobczuk, E. Guz, B. Połednik: Comparison of interpretation methods of thermocouple psychrometer readouts, AIP Conf. Proc. 1866, 040013 (2017)

    Google Scholar 

  • W.G. Teixeira, M. Bacis Ceddia, M. Vasconceles Ottoni, G. Kangussu Donnagema: Application of Soil Physics in Environmental Analyses (Springer, Cham 2014)

    Google Scholar 

  • M.R. Carter, E.G. Gregorich: Soil Sampling and Methods of Analysis, 2nd edn. (CRC Press, Boca Raton 2007)

    Google Scholar 

  • C.W. Boast, D. Kirkham: Auger hole seepage theory, Soil Sci. Soc. Am. J. 35(3), 365–373 (1971)

    Google Scholar 

  • DIN 19682, Blatt 8: Soil Quality – Field Tests – Determination of the Hydraulic Conductivity by Auger Hole Method (Beuth, Berlin 1972)

    Google Scholar 

  • R.R. van der Ploeg, B. Huwe: Some remarks concerning the determination of the hydraulic conductivity with the auger hole method, Z. Pflanzenernähr. Bodenkd. 151(4), 251–253 (1988), in German

    Google Scholar 

  • R. Kretzschmar, B. Huwe, R.R. van der Ploeg: Entwicklung eines Computerverfahrens zur Berechnung der hydraulischen Leitfähigkeit von wassergesättigten Böden mit der Bohrlochmethode, Z. Pflanzenernähr. Bodenkd. 152(1), 17–20 (1989), in German

    Google Scholar 

  • D.E. Elrick, W.D. Reynolds: Infiltration from constant-head well permeameters and infiltrometers. In: Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice, SSSA Special Publications, Vol. 30, ed. by G.C. Topp, W.D. Reynolds, R.E. Green (SSSA, Madison 1992) pp. 1–24

    Google Scholar 

  • A. Amoozegar: A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone, Soil Sci. Soc. Am. J. 53(5), 1356–1361 (1989)

    Google Scholar 

  • Eijkelkamp Agrisearch Equipment (EAE): Operating Instructions 09.07 Guelph Permeameter 2012), https://de.eijkelkamp.com/produkte/feldmessger-te/guelph-in-situ-permeameter.html, Accessed 24 July 2021

    Google Scholar 

  • K.K. Watson: An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials, Water Resour. Res. 2(4), 709–715 (1966)

    Google Scholar 

  • WMO: Guide to Instruments and Methods of Observation, WMO-No. 8, Volume I - Measurement of Meteorological Variables. (World Meteorological Organization, Geneva 2018)

    Google Scholar 

  • C. Liebethal, T. Foken: On the significance of the Webb correction to fluxes, Bound.-Layer Meteorol. 109(1), 99–106 (2003)

    Google Scholar 

  • E.C. Childs, N. Collis-George: The permeability of porous materials, Proc. R. Soc. A 201(1066), 392–405 (1950)

    Google Scholar 

  • Y. Mualem: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res. 12(3), 513–522 (1976)

    Google Scholar 

  • R.J. Millington, J.P. Quirk: Permeability of porous media, Nature 183(4658), 387–388 (1959)

    Google Scholar 

  • D.A. De Vries: Heat transfer in soils. In: Heat and Mass Transfer in the Biosphere, ed. by D.A. de Vries, N.H. Afgan (Scripta Book Co., Washington 1975) pp. 5–28

    Google Scholar 

  • T.J.M. Blom, S.R. Troelstra: Simulation Model of the Combined Transport of Water and Heat Produced by a Thermal Gradient in Porous Media, M.S. thesis (Agricultural University, Wageningen 1972)

    Google Scholar 

  • C. Bandt: Ordinal time series analysis, Ecol. Model. 182(3/4), 229–238 (2005)

    Google Scholar 

  • C. Bandt, B. Pompe: Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett. 88(17), 174102 (2002)

    Google Scholar 

  • C.E. Shannon: A mathematical theory of communication, Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Google Scholar 

  • B. Fadlallah, B. Chen, A. Keil, J. Príncipe: Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information, Phys. Rev. E 87(2), 022911 (2013)

    Google Scholar 

  • M.T. van Genuchten: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Google Scholar 

  • W. Durner: Hydraulic conductivity estimation for soils with heterogeneous pore structure, Water Resour. Res. 30(2), 211–223 (1994)

    Google Scholar 

  • L.M. Arya, J.F. Paris: A physicoempirical model to predict the soil moisture characteristic from particle size distribution and bulk density data, Soil Sci. Soc. Am. J. 45, 1023–1030 (1981)

    Google Scholar 

  • H. Vereecken, M. Weynants, M. Javaux, Y. Pachepsky, M.G. Schaap, M.T. van Genuchten: Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review, Vadose Zone J. 9(4), 795–820 (2010)

    Google Scholar 

  • M.G. Schaap, F.J. Leij, M.T. van Genuchten: Neural network analysis for hierarchical prediction of soil hydraulic properties, Soil Sci. Soc. Am. J. 62(4), 847–855 (1998)

    Google Scholar 

  • W. Jeschke: Digital close-range photogrammetry for surface measurement, Proc. SPIE 1395, 13953R (1990)

    Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna 2016)

    Google Scholar 

  • T. Foken (Ed.): Energy and Matter Fluxes of a Spruce Forest Ecosystem, Ecological Studies, Vol. 229 (Springer, Berlin, Heidelberg 2017)

    Google Scholar 

  • D. Cao, B. Shi, H. Zhu, G. Wei, S.-E. Chen, J. Yan: A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable, J. Rock Mech. Geotech. Eng. 7, 700–707 (2015)

    Google Scholar 

  • C. Sayde, J. Benitez Buelga, L. Rodriguez-Sinobas, L. El Khoury, M. English, N. van de Giesen, J.S. Selker: Mapping variability of soil water content and flux across 1–1000 m scales using the actively heated fiber optic method, Water Resour. Res. 50, 7302–7317 (2014)

    Google Scholar 

  • M. Schrön, M. Köhli, L. Scheiffele, J. Iwema, H.R. Bogena, L. Lv, E. Martini, G. Baroni, R. Rosolem, J. Weimar, J. Mai, M. Cuntz, C. Rebmann, S.E. Oswald, P. Dietrich, U. Schmidt, S. Zacharias: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity, Hydrol. Earth Syst. Sci. 21(10), 5009–5030 (2017)

    Google Scholar 

  • M. Schrön, S. Zacharias, G. Womack, M. Köhli, D. Desilets, S.E. Oswald, J. Bumberger, H. Mollenhauer, S. Kögler, P. Remmler, M. Kasner, A. Denk, P. Dietrich: Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment, Geosci. Instrum. Method. Data Syst. 7(1), 83–99 (2018)

    Google Scholar 

  • H. Vereecken, J.A. Huisman, H.J. Hendricks Franssen, N. Brüggemann, H.R. Bogena, S. Kollet, M. Javaux, J. van der Kruk, J. Vanderborght: Soil hydrology: Recent methodological advances, challenges, and perspectives, Water Resour. Res. 51(4), 2616–2633 (2015)

    Google Scholar 

  • R.A. Viscalla Rossel, A.B. McBratney, B. Minasny (Eds.): Proximal Soil Sensing, Progress in Soil Science (Springer, Dordrecht 2010)

    Google Scholar 

  • J.M. Soriano-Disla, L.J. Janik, R.A. Viscarra Rossel, L.M. Macdonald, M.J. McLaughlin: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties, Appl. Spectrosc. Rev. 49(2), 139–186 (2014)

    Google Scholar 

  • B.M. Duda, D.C. Weindorf, S. Chakraborty, B. Li, T. Man, L. Paulette, S. Deb: Soil characterization across catenas via advanced proximal sensors, Geoderma 298, 78–91 (2017)

    Google Scholar 

  • S.M. O’Rourke, B. Minasny, N.M. Holden, A.B. McBratney: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry, Soil Sci. Soc. Am. J. 80(4), 888–899 (2016)

    Google Scholar 

  • L. Breiman: Random forests, Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

  • S. Wold: Personal memories of the early PLS development, Chemom. Intell. Lab. Syst. 58(2), 83–84 (2001)

    Google Scholar 

  • L. Zhang, L. Zhang, B. Du: Deep learning for remote sensing data: A technical tutorial on the state of the art, IEEE Geosci. Remote Sens. Mag. 4(2), 22–40 (2016)

    Google Scholar 

  • T. Hengl, J. Mendes de Jesus, G.B.M. Heuvelink, M. Ruiperez Gonzalez, M. Kilibarda, A. Blagotić, S. Wei, M.N. Wright, X. Geng, B. Bauer-Marschallinger, M.A. Guevara, R. Vargas, R.A. MacMillan, N.H. Batjes, J.G.B. Leenaars, E. Ribeiro, I. Wheeler, S. Mantel, B. Kempen: SoilGrids250m: Global gridded soil information based on machine learning, PLOS ONE 12(2), e0169748 (2017)

    Google Scholar 

  • C. Montzka, M. Herbst, L. Weihermüller, A. Verhoef, H. Vereecken: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves, Earth Syst. Sci. Data 9(2), 529–543 (2017)

    Google Scholar 

  • N.H. Batjes, E. Ribeiro, A. van Oostrum, J. Leenaars, T. Hengl, J. Mendes de Jesus: WoSIS: Providing standardised soil profile data for the world, Earth Syst. Sci. Data 9(1), 1–14 (2017)

    Google Scholar 

Download references

Acknowledgements

Figures 61.861.10 were created by Sebastian Arnhold in the context of his PhD thesis [61.63]at the Department of Soil Physics, University of Bayreuth. They have not been published so far. Sebastian Arnhold died on 11 November 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Huwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Huwe, B., Bogner, C., Foken, T. (2021). Soil Measurements. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_61

Download citation

Publish with us

Policies and ethics