Skip to main content

Water Vapor Differential Absorption Lidar

  • Chapter
Springer Handbook of Atmospheric Measurements

Part of the book series: Springer Handbooks ((SHB))

  • 5964 Accesses

Abstract

Water vapor is one of the fundamental thermodynamic variables that define the state of the atmosphere. It is highly variable in space and time and influences many important processes related to weather and climate. For more than two decades the importance of water vapor profiling has been underscored by the research and operational weather communities. The ability to measure the spatial and temporal variability of moisture in the lower troposphere is necessary to improve our understanding of many atmospheric processes, improve numerical weather prediction forecasting skills, study weather phenomena, and study regional climate variability. Differential absorption lidar can provide accurate, continuous high-resolution measurements of water vapor. The technique spans from complex research systems capable of 3-D scanning to truly autonomous field-deployable profiling devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Hayman, S. Spuler: Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols, Opt. Express 25(24), A1096 (2017)

    Article  Google Scholar 

  • S. Ismail, E.V. Browell: Recent lidar technology developments and their influence on measurements of tropospheric water vapor, J. Atmos. Ocean. Technol. 11(1), 76–84 (1994)

    Article  Google Scholar 

  • V. Wulfmeyer: Ground-based differential absorption lidar for water-vapor and temperature profiling: Development and specifications of a high-performance laser transmitter, Appl. Opt. 37(18), 3804–3824 (1998)

    Article  Google Scholar 

  • L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner: The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  Google Scholar 

  • R.M. Schotland: Some observations of the vertical profile of water vapor by means of a laser optical radar. In: 4th Symp. Remote Sens. Environ. (Univ. Michigan, Ann Arbor 1964)

    Google Scholar 

  • R.M. Schotland: Errors in the lidar measurement of atmospheric gases by differential absorption, J. Appl. Meteorol. 13(1), 71–77 (1974)

    Article  Google Scholar 

  • E.V. Browell, T.D. Wilkerson, T.J. McIlrath: Water vapor differential absorption lidar development and evaluation, Appl. Opt. 18(20), 3474–3483 (1979)

    Article  Google Scholar 

  • G. Mégie, J. Pelon, J. Lefrère, C. Cahen, P.H. Flamant: Ozone and water vapor monitoring using a ground-based lidar system. In: Optical and Laser Remote Sensing, ed. by D.K. Killinger, A. Mooradian (Springer, Berlin, Heidelberg 1983) pp. 223–228

    Chapter  Google Scholar 

  • C. Cahen, G. Megie, P. Flamant: Lidar monitoring of the water vapor cycle in the troposphere, J. Appl. Meteorol. 21(10), 1506–1515 (1982)

    Article  Google Scholar 

  • E.R. Murray, R.D. Hake, J.E. van der Laan, J.G. Hawley: Atmospheric water vapor measurements with an infrared (10 µm) differential‚ absorption lidar system, Appl. Phys. Lett. 28(9), 542–543 (1976)

    Article  Google Scholar 

  • P.W. Baker: Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar, Appl. Opt. 22(15), 2257–2264 (1983)

    Article  Google Scholar 

  • W.B. Grant, J.S. Margolis, A.M. Brothers, D.M. Tratt: CO2 DIAL measurements of water vapor, Appl. Opt. 26(15), 3033–3042 (1987)

    Article  Google Scholar 

  • R.M. Hardesty: Coherent DIAL measurement of range-resolved water vapor concentration, Appl. Opt. 23(15), 2545–2553 (1984)

    Article  Google Scholar 

  • M. Endemann, R.L. Byer: Remote single-ended measurements of atmospheric temperature and humidity at 1.77 µm using a continuously tunable source, Opt. Lett. 5(10), 452–454 (1980)

    Article  Google Scholar 

  • M. Endemann, R.L. Byer: Simultaneous remote measurements of atmospheric temperature and humidity using a continuously tunable IR lidar, Appl. Opt. 20(18), 3211–3217 (1981)

    Article  Google Scholar 

  • S. Cha, K.P. Chan, D.K. Killinger: Tunable 2.1-µm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles, Appl. Opt. 30(27), 3938–3943 (1991)

    Article  Google Scholar 

  • V. Wulfmeyer, S. Schmitz, J. Bösenberg, S. Lehmann, C. Senff: Injection-seeded alexandrite ring laser: Performance and application in a water-vapor differential absorption lidar, Opt. Lett. 20(6), 638–640 (1995)

    Article  Google Scholar 

  • V. Wulfmeyer, J. Bösenberg: Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar, Opt. Lett. 21(15), 1150–1152 (1996)

    Article  Google Scholar 

  • K. Ertel, H. Linné, J. Bösenberg: Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation, Appl. Opt. 44(24), 5120–5126 (2005)

    Article  Google Scholar 

  • J. Bösenberg, H. Linné: Continuous ground-based water vapour profiling using DIAL. In: 23rd Int. Laser Radar Conf., Nara (2006) pp. 679–682

    Google Scholar 

  • H. Vogelmann, T. Trickl: Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station, Appl. Opt. 47(12), 2116–2132 (2008)

    Article  Google Scholar 

  • A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, F. Späth: Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar, Proc. SPIE 7475, 747504 (2009)

    Google Scholar 

  • J.L. Machol, T. Ayers, K.T. Schwenz, K.W. Koenig, R.M. Hardesty, C. Senff, M.A. Krainak, J.B. Abshire, H.E. Bravo, S.P. Sandberg: Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor, Appl. Opt. 43(15), 3110–3121 (2004)

    Article  Google Scholar 

  • A.R. Nehrir, K.S. Repasky, J.L. Carlsten, M.D. Obland, J.A. Shaw: Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL), J. Atmos. Ocean. Technol. 26(4), 733–745 (2009)

    Article  Google Scholar 

  • A.R. Nehrir, K.S. Repasky, J.L. Carlsten: Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere, J. Atmos. Ocean. Technol. 28(2), 131–147 (2011)

    Article  Google Scholar 

  • A.R. Nehrir, K.S. Repasky, J.L. Carlsten: Micropulse water vapor differential absorption lidar: Transmitter design and performance, Opt. Express 20(22), 25137–25151 (2012)

    Article  Google Scholar 

  • S.M. Spuler, K.S. Repasky, B. Morley, D. Moen, M. Hayman, A.R. Nehrir: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor, Atmos. Meas. Tech. 8(3), 1073–1087 (2015)

    Article  Google Scholar 

  • E.V. Browell: Remote sensing of tropospheric gases and aerosols with an airborne dial system. In: Optical and Laser Remote Sensing, ed. by D.K. Killinger, A. Mooradian (Springer, Berlin, Heidelberg 1983) pp. 138–147

    Chapter  Google Scholar 

  • N.S. Higdon, E.V. Browell, P. Ponsardin, B.E. Grossmann, C.F. Butler, T.H. Chyba, M.N. Mayo, R.J. Allen, A.W. Heuser, W.B. Grant, S. Ismail, S.D. Mayor, A.F. Carter: Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols, Appl. Opt. 33(27), 6422–6438 (1994)

    Article  Google Scholar 

  • A.S. Moore, K.E. Brown, W.M. Hall, J.C. Barnes, W.C. Edwards, L.B. Petway, A.D. Little, W.S. Luck, I.W. Jones, C.W. Antill, E.V. Browell, S. Ismail: Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument. In: Advances in Atmospheric Remote Sensing with Lidar, ed. by A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer, Berlin Heidelberg 1997) pp. 281–288

    Chapter  Google Scholar 

  • G. Ehret, C. Kiemle, W. Renger, G. Simmet: Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system, Appl. Opt. 32(24), 4534–4551 (1993)

    Article  Google Scholar 

  • G. Ehret, A. Fix, V. Weiß, G. Poberaj, T. Baumert: Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere, Appl. Phys. B 67(4), 427–431 (1998)

    Article  Google Scholar 

  • A. Fix, G. Ehret, J. Löhring, D. Hoffmann, M. Alpers: Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm, Appl. Phys. B 102(4), 905–915 (2010)

    Article  Google Scholar 

  • A. Savitzky, M.J.E. Golay: Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36(8), 1627–1639 (1964)

    Article  Google Scholar 

  • C. She: Spectral structure of laser light scattering revisited: Bandwidths of nonresonant scattering lidars, Appl. Opt. 40(27), 4875–4884 (2001)

    Article  Google Scholar 

  • C.D. Boley, R.C. Desai, G. Tenti: Kinetic models and Brillouin scattering in a molecular gas, Can. J. Phys. 50(18), 2158–2173 (1972)

    Article  Google Scholar 

  • R.J. Alvarez, L.M. Caldwell, P.G. Wolyn, D.A. Krueger, T.B. McKee, C.Y. She: Profiling temperature, pressure and aerosol properties using a high spectral resolution lidar employing atomic blocking filters, J. Atmos. Ocean. Technol. 10(4), 546–556 (1993)

    Article  Google Scholar 

  • P. Piironen, E.W. Eloranta: Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter, Opt. Lett. 19(3), 234–236 (1994)

    Article  Google Scholar 

  • J. Hair, L. Caldwell, D. Krueger, C.Y. She: High-spectral-resolution lidar with iodine-vapor filters: Measurement of atmospheric-state and aerosol profiles, Appl. Opt. 40(30), 5280–5294 (2001)

    Article  Google Scholar 

  • J.W. Hair, C.A. Hostetler, A.L. Cook, D.B. Harper, R.A. Ferrare, T.L. Mack, W. Welch, L.R. Isquierdo, F.E. Hovis: Airborne high spectral resolution lidar for profiling aerosol optical properties, Appl. Opt. 47(36), 6734–6752 (2008)

    Article  Google Scholar 

  • A. Ansmann: Errors in ground-based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering, Appl. Opt. 24(21), 3476–3480 (1985)

    Article  Google Scholar 

  • F. Späth, A. Behrendt, S.K. Muppa, S. Metzendorf, A. Riede, V. Wulfmeyer: 3D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar, Atmos. Meas. Tech. 9(4), 1701–1720 (2016)

    Article  Google Scholar 

  • F. Späth, A. Behrendt, V. Wulfmeyer: Sensitivity of the Rayleigh–Doppler effect with respect to wavelength and backscatter coefficient. In: 27th Int. Laser Radar Conf., New York (2015)

    Google Scholar 

  • V.V. Zuev, V.E. Zuev, Y.S. Makushkin, V.N. Marichev, A.A. Mitsel: Laser sounding of atmospheric humidity: Experiment, Appl. Opt. 22(23), 3742–3746 (1983)

    Article  Google Scholar 

  • P.C.D. Hobbs: Building Electro-Optical Systems, Wiley Series in Pure and Applied Optics, Vol. 1 (John Wiley & Sons, New York 2000)

    Book  Google Scholar 

  • K. Ogawa, R.S. Vodhanel: Measurements of mode partition noise of laser diodes, IEEE J. Quantum Electron. 18(7), 1090–1093 (1982)

    Article  Google Scholar 

  • K. Ogawa: Analysis of mode partition noise in laser transmission systems, IEEE J. Quantum Electron. 18(5), 849–855 (1982)

    Article  Google Scholar 

  • C. Senff, J. Bösenberg, G. Peters: Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar-RASS, J. Atmos. Ocean. Technol. 11(1), 85–93 (1994)

    Article  Google Scholar 

  • D.H. Lenschow, V. Wulfmeyer, C. Senff: Measuring second- through fourth-order moments in noisy data, J. Atmos. Ocean. Technol. 17(10), 1330–1347 (2000)

    Article  Google Scholar 

  • D.P. Donovan, J.A. Whiteway, A.I. Carswell: Correction for nonlinear photon-counting effects in lidar systems, Appl. Opt. 32(33), 6742–6753 (1993)

    Article  Google Scholar 

  • R. Stillwell, R. Neely, J. Thayer, M. Shupe, D. Turner: Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar, Atmos. Meas. Tech. 11(2), 835–859 (2018)

    Article  Google Scholar 

  • N. Menyuk, D.K. Killinger: Temporal correlation measurements of pulsed dual CO2 lidar returns, Opt. Lett. 6(6), 301–303 (1981)

    Article  Google Scholar 

  • M. Imaki, R. Kojima, S. Kameyama: Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR, EPJ Web Conf. 176, 05039 (2018)

    Article  Google Scholar 

  • R. Roininen, C. Münkel: Results from continuous atmospheric boundary layer humidity profiling with a compact DIAL instrument. In: 8th Symp. Lidar Atmos. Appl., Seattle (American Meteorological Society, Washington 2017)

    Google Scholar 

  • L. Mei, M. Brydegaard: Continuous-wave differential absorption lidar, Laser Photonics Rev. 9(6), 629–636 (2015)

    Article  Google Scholar 

  • H. Vogelmann, R. Sussmann, T. Trickl, T. Borsdorff: Intercomparison of atmospheric water vapor soundings from the differential absorption lidar (DIAL) and the solar FTIR system on Mt. Zugspitze, Atmos. Meas. Tech. 4(5), 835–841 (2011)

    Article  Google Scholar 

  • G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, M. Schiller: High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar, Appl. Opt. 52(11), 2454–2469 (2013)

    Article  Google Scholar 

  • T.M. Weckwerth, K.J. Weber, D.D. Turner, S.M. Spuler: Validation of a water vapor micropulse differential absorption lidar (DIAL), J. Atmos. Ocean. Technol. 33(11), 2353–2372 (2016)

    Article  Google Scholar 

  • A.M. South, I.M. Povey, R.L. Jones: Broadband lidar measurements of tropospheric water vapor profiles, J. Geophys. Res. Atmos. 103(D23), 31191–31202 (1998)

    Article  Google Scholar 

  • G.M. Krekov, M.M. Krekova, A.Y. Sukhanov: Estimation of the broadband lidar potential for remote sensing of the molecular atmosphere, Atmos. Ocean. Opt. 22(3), 346–358 (2009)

    Article  Google Scholar 

  • E.E. Remsberg, L.L. Gordley: Analysis of differential absorption lidar from the space shuttle, Appl. Opt. 17(4), 624–630 (1978)

    Article  Google Scholar 

  • National Research Council: Observing Weather and Climate from the Ground Up (National Academies Press, Washington 2009)

    Google Scholar 

  • V. Wulfmeyer, R.M. Hardesty, D.D. Turner, A. Behrendt, M.P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, F. Zus: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles, Rev. Geophys. 53(3), 819–895 (2015)

    Article  Google Scholar 

  • R.E. Carbone, R.J. Serafin, R.M. Hoff, R.M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, K. Knupp: Thermodynamic Profiling Technologies Workshop Report to the National Science Foundation and the National Weather Service. Tech. Rep. NCAR/TN-488 (2012)

    Google Scholar 

  • T.M. Weckwerth, V. Wulfmeyer, R.M. Wakimoto, M.R. Hardesty, J.W. Wilson, R.M. Banta: NCAR-NOAA Lower-Tropospheric Water Vapor Workshop, Bull. Am. Meteorol. Soc. 80(11), 2339–2357 (1999)

    Article  Google Scholar 

  • N.A. Crook: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields, Mon. Weather Rev. 124(8), 1767–1785 (1996)

    Article  Google Scholar 

  • T.M. Weckwerth, J.W. Wilson, R.M. Wakimoto: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls, Mon. Weather Rev. 124(5), 769–784 (1996)

    Article  Google Scholar 

  • T.M. Weckwerth: The effect of small-scale moisture variability on thunderstorm initiation, Mon. Weather Rev. 128(12), 4017–4030 (2000)

    Article  Google Scholar 

  • W. Feltz, W.L. Smith, R.O. Knuteson, H.E. Revercomb, H.M. Woolf, H.B. Howell: Meteorological applications of temperature and water vapor retrievals from the ground-based atmospheric emitted radiance interferometer (AERI), J. Appl. Meteorol. 37(9), 857–875 (1998)

    Article  Google Scholar 

  • D.D. Turner, U. Löhnert: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based atmospheric emitted radiance interferometer (AERI), J. Appl. Meteorol. Climatol. 53(3), 752–771 (2014)

    Article  Google Scholar 

  • J. Cooney: Measurement of atmospheric temperature profiles by Raman backscatter, J. Appl. Meteorol. 11(1), 108–112 (1972)

    Article  Google Scholar 

  • A. Behrendt: Temperature measurements with lidar. In: Lidar – Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences, Vol. 102, ed. by C. Weitkamp (Springer, New York 2005), Chap. 10, pp. 273–305

    Google Scholar 

  • C.L. Korb, C.Y. Weng: A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles, J. Appl. Meteorol. 21(9), 1346–1355 (1982)

    Article  Google Scholar 

  • C.L. Korb, G.K. Schwemmer, M. Dombrowski, C.Y. Weng: Atmospheric pressure and temperature profiling using near ir differential absorption lidar. In: Optical and Laser Remote Sensing, ed. by D.K. Killinger, A. Mooradian (Springer, Berlin, Heidelberg 1983) pp. 120–127

    Chapter  Google Scholar 

  • F. Theopold, J. Bösenberg: Differential absorption lidar measurements of atmospheric temperature profiles: Theory and experiment, J. Atmos. Ocean. Technol. 10(2), 165–179 (1993)

    Article  Google Scholar 

  • J. Bösenberg: Ground-based differential absorption lidar for water-vapor and temperature profiling: Methodology, Appl. Opt. 37(18), 3845–3860 (1998)

    Article  Google Scholar 

  • J. Bösenberg: Differential-absorption lidar for water vapor and temperature profiling. In: Lidar – Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences, Vol. 102, ed. by C. Weitkamp (Springer, New York 2005), Chap. 8, pp. 213–239

    Google Scholar 

  • R.A. Stillwell, S.M. Spuler, M. Hayman, K.S. Repasky, C.E. Bunn: Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature, Opt. Express 28, 71–93 (2020)

    Article  Google Scholar 

  • C.E. Bunn, K.S. Repasky, M. Hayman, R.A. Stillwell, S.M. Spuler: Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient, Appl. Opt. 57(16), 4440–4450 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Spuler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Spuler, S.M., Hayman, M., Weckwerth, T.M. (2021). Water Vapor Differential Absorption Lidar. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_26

Download citation

Publish with us

Policies and ethics