Skip to main content

Raman Lidar for Water Vapor and Temperature Profiling

  • Chapter
Springer Handbook of Atmospheric Measurements

Abstract

The Raman lidar technique is a refinement of the lidar method and permits, besides the measurement of particle optical properties, the simultaneous profiling of the water-vapor mixing ratio and temperature with high range resolution and accuracy. This technique does not require a laser transmitter with a certain wavelength; it uses standard high-power lasers. Certain portions of the spectrum of the atmospheric backscatter signal are extracted as measurement signals. The noise and systematic errors in each profile can be characterized, which is a fundamental requirement for many applications. Many ground-based Raman lidar instruments that are intended for research have been constructed, some of which are already operational. The first airborne Raman lidar systems are also now in use, and commercial systems have recently become available. This technique has the potential to be used extensively within surface networks for obtaining atmospheric thermodynamic data with regional to global coverage. Spaceborne Raman lidar operation will also be feasible in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • V. Wulfmeyer, R.M. Hardesty, D.D. Turner, A. Behrendt, M.P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, F. Zus: A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles, Rev. Geophys. 53(3), 819–895 (2015)

    Article  Google Scholar 

  • A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, T. Tsuda: Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient, Appl. Opt. 41(36), 7657–7666 (2002)

    Article  Google Scholar 

  • D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner: Scanning 6-wavelength 11-channel aerosol lidar, J. Atmos. Ocean. Technol. 17(11), 1469–1482 (2000)

    Article  Google Scholar 

  • A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt. 31(33), 7113–7131 (1992)

    Article  Google Scholar 

  • D.N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, H. Vömel: Airborne and ground-based measurements using a high-performance Raman lidar, J. Atmos. Ocean. Technol. 27(11), 1781–1801 (2010)

    Article  Google Scholar 

  • B. Liu, Z. Wang, Y. Cai, P. Wechsler, W. Kuestner, M. Burkhart, W. Welch: Compact airborne Raman lidar for profiling aerosol, water vapor and clouds, Opt. Express 22(17), 20613–20621 (2014)

    Article  Google Scholar 

  • P. Di Girolamo, A. Behrendt, V. Wulfmeyer: Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: Performance simulations, Appl. Opt. 45(11), 2474–2494 (2006)

    Article  Google Scholar 

  • P. Di Girolamo, A. Behrendt, V. Wulfmeyer: Space-borne profiling of atmospheric thermodynamic variables with Raman lidar, Opt. Express 26(7), 8125–8161 (2018)

    Article  Google Scholar 

  • D.A. Leonard: Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser, Nature 216(5111), 142–143 (1967)

    Article  Google Scholar 

  • J.A. Cooney: Measurement of the Raman component of laser atmospheric backscatter, Appl. Phys. Lett. 12(2), 40–42 (1968)

    Article  Google Scholar 

  • S.H. Melfi, J.D. Lawrence, M.P. McCormick: Observation of Raman scattering by water vapor in the atmosphere, Appl. Phys. Lett. 15(9), 295–297 (1969)

    Article  Google Scholar 

  • J. Cooney: Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter, J. Appl. Meteorol. 9(1), 182–184 (1970)

    Article  Google Scholar 

  • J. Cooney: Measurement of atmospheric temperature profiles by Raman backscatter, J. Appl. Meteorol. 11(1), 108–112 (1972)

    Article  Google Scholar 

  • D. Renaut, J.C. Pourny, R. Capitini: Daytime Raman-lidar measurements of water vapor, Opt. Lett. 5(6), 233–235 (1980)

    Article  Google Scholar 

  • D.N. Whiteman, S.H. Melfi, R.A. Ferrare: Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere, Appl. Opt. 31(16), 3068–3082 (1992)

    Article  Google Scholar 

  • A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis: Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, Appl. Phys. B 55(1), 18–28 (1992)

    Article  Google Scholar 

  • J.E.M. Goldsmith, F.H. Blair, S.E. Bisson, D.D. Turner: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols, Appl. Opt. 37(21), 4979–4990 (1998)

    Article  Google Scholar 

  • Y.F. Arshinov, S.M. Bobrovnikov, V.E. Zuev, V.M. Mitev: Atmospheric temperature measurements using a pure rotational Raman lidar, Appl. Opt. 22(19), 2984–2990 (1983)

    Article  Google Scholar 

  • D. Nedeljkovic, A. Hauchecorne, M.L. Chanin: Rotational Raman lidar to measure atmospheric temperature from the ground to 30 km, IEEE Trans. Geosci. Remote Sens. 31(1), 90–101 (1993)

    Article  Google Scholar 

  • G. Vaughan, D.P. Wareing, S.J. Pepler, L. Thomas, V. Mitev: Atmospheric temperature profiles made by rotational Raman scattering, Appl. Opt. 32(15), 2758–2764 (1993)

    Article  Google Scholar 

  • A. Behrendt, J. Reichardt: Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator, Appl. Opt. 39(9), 1372–1378 (2000)

    Article  Google Scholar 

  • A. Behrendt, T. Nakamura, T. Tsuda: Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere, Appl. Opt. 43(14), 2930–2939 (2004)

    Article  Google Scholar 

  • P. Di Girolamo, R. Marchese, D.N. Whiteman, B.B. Demoz: Rotational Raman lidar measurements of atmospheric temperature in the UV, Geophys. Res. Lett. 31(1), L01106 (2004)

    Article  Google Scholar 

  • G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna: Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar, Nat. Phys. Sci. 229, 78–79 (1971)

    Article  Google Scholar 

  • D.D. Turner, J.E.M. Goldsmith: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods, J. Atmos. Ocean. Technol. 16(8), 1062–1076 (1999)

    Article  Google Scholar 

  • E. Brocard, R. Philipona, A. Haefele, G. Romanens, A. Mueller, D. Ruffieux, V. Simeonov, B. Calpini: Raman lidar for meteorological observations, RALMO – Part 2: Validation of water vapor measurements, Atmos. Meas. Tech. 6(5), 1347–1358 (2013)

    Article  Google Scholar 

  • T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, H. van den Bergh: Raman lidar for meteorological observations, RALMO – Part 1: Instrument description, Atmos. Meas. Tech. 6(5), 1329–1346 (2013)

    Article  Google Scholar 

  • J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, R. Begbie: RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements, Appl. Opt. 51(34), 8111–8131 (2012)

    Article  Google Scholar 

  • A. Apituley, K.M. Wilson, C. Potma, H. Volten, M. de Graaf: Performance assessment and application of Caeli – A high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds. In: Proc. 8th Int. Symp. Tropospheric Profiling, Delft, ed. by A. Apituley, H.W.J. Russchenberg, W.A.A. Monna (2009)

    Google Scholar 

  • A. Behrendt: Temperature measurements with lidar. In: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences, Vol. 102, ed. by C. Weitkamp (Springer, New York 2005) pp. 273–305

    Chapter  Google Scholar 

  • E. Hammann, A. Behrendt, F. Le Mounier, V. Wulfmeyer: Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment, Atmos. Chem. Phys. 15(5), 2867–2881 (2015)

    Article  Google Scholar 

  • D.N. Whiteman: Examination of the traditional Raman lidar technique: I. Evaluating the temperature-dependent lidar equations, Appl. Opt. 42(15), 2571–2592 (2003)

    Article  Google Scholar 

  • D.N. Whiteman: Examination of the traditional Raman lidar technique: II. Evaluating the ratios for water vapor and aerosols, Appl. Opt. 42(15), 2593–2608 (2003)

    Article  Google Scholar 

  • D.D. Turner, B.M. Lesht, S.A. Clough, L.C. Liljegren, H.E. Revercomb, D.C. Tobin: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience, J. Atmos. Ocean. Technol. 20(1), 117–132 (2003)

    Article  Google Scholar 

  • R.A. Ferrare, R. Ferrare, D. Turner, M. Clayto, B. Schmid, J. Redemann, D. Covert, R. Elleman, J. Ogren, E. Andrews, J.E.M. Goldsmith, H. Jonsson: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains, J. Geophys. Res. 111(D5), D05S08 (2006)

    Google Scholar 

  • D.D. Venable, D.N. Whiteman, M.N. Calhoun, A.O. Dirisu, R.M. Connell, E. Landulfo: Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system, Appl. Opt. 50(23), 4622–4632 (2011)

    Article  Google Scholar 

  • C. Muñoz-Porcar, A. Comerón, M. Sicard, R. Barragan, D. Garcia-Vizcaino, A. Rodríguez-Gómez, F. Rocadenbosch, M.J. Granados-Muñoz: Calibration of Raman lidar water vapor mixing ratio measurements using zenithal measurements of diffuse sunlight and a radiative transfer model, IEEE Trans. Geosci. Remote Sens. 56(12), 7405–7414 (2018)

    Article  Google Scholar 

  • D.D. Turner, R.A. Ferrare, L.A. Heilman Brasseur, W.F. Feltz, T.P. Tooman: Automated retrievals of water vapor and aerosol profiles over Oklahoma from an operational Raman lidar, J. Atmos. Ocean. Technol. 19(1), 37–50 (2002)

    Article  Google Scholar 

  • D.N. Whiteman, B. Demoz, K. Rush, G. Schwemmer, B. Gentry, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, S.H. Melfi, Z. Wang, M. Cadirola, B. Mielke, D. Venable, T. Van Hove: Raman lidar measurements during the International H2O Project. Part I: Instrumentation and analysis techniques, J. Atmos. Ocean. Technol. 23(2), 157–169 (2006)

    Article  Google Scholar 

  • D.N. Whiteman, B. Demoz, G. Schwemmer, B. Gentry, P. Di Girolamo, D. Sabatino, J. Comer, I. Veselovskii, K. Evans, R.-F. Lin, Z. Wang, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, J. Wang: Raman water vapor lidar measurements during the International H2O Project. Part II: Case studies, J. Atmos. Ocean. Technol. 23(2), 170–183 (2006)

    Article  Google Scholar 

  • A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D.N. Whiteman, B.B. Demoz, E.V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, J. Wang: Intercomparison of water vapor data measured with lidar during IHOP_2002. Part 1: Airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes, J. Atmos. Ocean. Technol. 24(1), 3–21 (2007)

    Article  Google Scholar 

  • A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E.V. Browell, D.N. Whiteman: Intercomparison of water vapor data measured with lidar during IHOP_2002, Part 2: Airborne to airborne systems, J. Atmos. Ocean. Technol. 24(1), 22–39 (2007)

    Article  Google Scholar 

  • T. Leblanc, I.S. McDermid: Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements, Appl. Opt. 47(30), 5592–5603 (2008)

    Article  Google Scholar 

  • R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, V. Wulfmeyer: The water vapour intercomparison effort in the framework of the convective and orographically-induced precipitation study: Airborne-to-ground-based and airborne-to-airborne lidar systems, Q. J. R. Meteorol. Soc. 137(S1), 325–348 (2011)

    Article  Google Scholar 

  • A. Foth, H. Baars, P. Di Girolamo, B. Pospichal: Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE, Atmos. Chem. Phys. 15(14), 7753–7763 (2015)

    Article  Google Scholar 

  • M. Radlach, A. Behrendt, V. Wulfmeyer: Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields, Atmos. Chem. Phys. 8(2), 159–169 (2008)

    Article  Google Scholar 

  • R.K. Newsom, D.D. Turner, J.E.M. Goldsmith: Long-term evaluation of temperature profiles measured by an operational Raman lidar, J. Atmos. Ocean. Technol. 30(8), 1616–1634 (2013)

    Article  Google Scholar 

  • P. Di Girolamo, B. De Rosa, C. Flamant, D. Summa, O. Bousquet, P. Chazette, J. Totems, M. Cacciani: Water vapor mixing ratio and temperature inter-comparison results in the framework of the Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1, Bull. Atmos. Sci. Technol. 1, 113–153 (2020)

    Article  Google Scholar 

  • V. Wulfmeyer, C. Walther: Future performance of ground-based and airborne water vapor differential absorption lidar. I: Overview and theory, Appl. Opt. 40(30), 5304–5320 (2001)

    Article  Google Scholar 

  • V. Wulfmeyer, C. Walther: Future performance of ground-based and air-borne water vapor differential absorption lidar. II: Simulations of the precision of a near-infrared, high-power system, Appl. Opt. 40(30), 5321–5336 (2001)

    Article  Google Scholar 

  • A. Behrendt, V. Wulfmeyer, E. Hammann, S.K. Muppa, S. Pal: Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: First measurements with rotational Raman lidar, Atmos. Chem. Phys. 15(10), 5485–5500 (2015)

    Article  Google Scholar 

  • V. Wulfmeyer, S.K. Muppa, A. Behrendt, E. Hammann, F. Späth, Z. Sorbjan, D.D. Turner, R.M. Hardesty: Determination of convective boundary layer entrainment fluxes, dissipation rates, and the molecular destruction of variances: Theoretical description and a strategy for its confirmation with a novel lidar system synergy, J. Atmos. Sci. 73(2), 667–692 (2016)

    Article  Google Scholar 

  • P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, V. Wulfmeyer: Characterisation of boundary layer turbulent processes by the Raman lidar BASIL in the frame of HD(CP)2 Observational Prototype Experiment, Atmos. Chem. Phys. 17(1), 745–767 (2017)

    Article  Google Scholar 

  • A. Behrendt, V. Wulfmeyer, C. Senff, S.K. Muppa, F. Späth, D. Lange, N. Kalthoff, A. Wieser: Observation of sensible and latent heat flux profiles with lidar, Atmos. Meas. Tech. 13, 3221–3233 (2020)

    Article  Google Scholar 

  • V. Wulfmeyer, A. Behrendt, D. Lange: High profiles, Meteorol. Technol. Int. 9/2018, 62–65 (2018)

    Google Scholar 

  • D. Lange, A. Behrendt, V. Wulfmeyer: Compact operational tropospheric water vapor and temperature Raman lidar with turbulence resolution, Geophys. Res. Lett. 46(24), 14844–14853 (2019)

    Article  Google Scholar 

  • E. Hammann, A. Behrendt: Parametrization of optimum filter passbands for rotational Raman temperature measurements, Opt. Express 23(24), 30767–30782 (2015)

    Article  Google Scholar 

  • P. Di Girolamo, D. Summa, R. Ferretti: Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event, J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009)

    Article  Google Scholar 

  • P. Di Girolamo, D. Summa, R.-F. Lin, T. Maestri, R. Rizzi, G. Masiello: UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties, Atmos. Chem. Phys. 9(22), 8799–8811 (2009)

    Article  Google Scholar 

  • P. Chazette, F. Marnas, J. Totems: The mobile Water vapor Aerosol Raman LIdar and its implication in the frame of the HyMeX and ChArMEx programs: Application to a dust transport process, Atmos. Meas. Tech. 7(6), 1629–1647 (2014)

    Article  Google Scholar 

  • H.M.J. Barbosa, B. Barja, T. Pauliquevis, D.A. Gouveia, P. Artaxo, C.G. Cirino, R.M.N. Santos, A.B. Oliveira: A permanent Raman lidar station in the Amazon: Description, characterization, and first results, Atmos. Meas. Tech. 7(6), 1745–1762 (2014)

    Article  Google Scholar 

  • Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, D. Müller: Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer, Appl. Opt. 44(17), 3593–3603 (2005)

    Article  Google Scholar 

  • D.H. Lenschow, V. Wulfmeyer, C. Senff: Measuring second-through fourth-order moments in noisy data, J. Atmos. Ocean. Technol. 17(10), 1330–1347 (2000)

    Article  Google Scholar 

  • R.K. Newsom, D.D. Turner, B. Mielke, M. Clayton, R. Ferrare, C. Sivaraman: The use of simultaneous analog and photon counting detection for Raman lidar, Appl. Opt. 48(20), 3903–3914 (2009)

    Article  Google Scholar 

  • V. Wulfmeyer, D.D. Turner, S. Pal, E. Wagner: Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?, Bound.-Layer Meteorol. 136(2), 253–284 (2010)

    Article  Google Scholar 

  • R.A. Ferrare, E.V. Browell, S. Ismail, S.A. Kooi, L.H. Brasseur, V.G. Brackett, M.B. Clayton, J.D.W. Barrick, G.S. Diskin, J.E.M. Goldsmith, B.M. Lesht, J.R. Podolske, G.W. Sachse, F.J. Schmidlin, D.D. Turner, D.N. Whiteman, D. Tobin, L.M. Miloshevich, H.E. Revercomb, B.B. Demoz, P. Di Girolamo: Characterization of upper-troposphere water vapor measurements during AFWEX using LASE, J. Atmos. Ocean. Technol. 21(12), 1790–1808 (2004)

    Article  Google Scholar 

  • D.D. Turner, R.A. Ferrare, V. Wulfmeyer, A.J. Scarino: Aircraft evaluation of ground-based Raman lidar water vapor turbulence profiles in convective mixed layers, J. Atmos. Ocean. Technol. 31(5), 1078–1088 (2014)

    Article  Google Scholar 

  • G. Masiello, C. Serio, T. Deleporte, H. Herbin, P. Di Girolamo, C. Champollion, A. Behrendt, P. Bosser, O. Bock, V. Wulfmeyer, M. Pommier, C. Flamant: Comparison of IASI water vapour products over complex terrain with COPS campaign data, Meteorol. Z. 22(4), 471–487 (2013)

    Article  Google Scholar 

  • J. Milovac, K. Warrach-Sagi, A. Behrendt, F. Späth, J. Ingwersen, V. Wulfmeyer: Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements, J. Geophys. Res. Atmos. 121(2), 624–649 (2016)

    Article  Google Scholar 

  • P. Di Girolamo, C. Flamant, M. Cacciani, E. Richard, V. Ducrocq, D. Summa, D. Stelitano, N. Fourrié, F. Saïd: Observation of low-level wind reversals in the Gulf of Lion area and their impact on the water vapour variability, Q. J. R. Meteorol. Soc. 142(S1), 153–172 (2016)

    Article  Google Scholar 

  • R. Heinze, A. Dipankar, C. Carbajal Henken, C. Moseley, O. Sourdeval, S. Trömel, X. Xie, P. Adamidis, F. Ament, H. Baars, C. Barthlott, A. Behrendt, U. Blahak, S. Bley, S. Brdar, M. Brueck, S. Crewell, H. Deneke, P. Di Girolamo, R. Evaristo, J. Fischer, C. Frank, P. Friederichs, T. Göcke, K. Gorges, L. Hande, M. Hanke, A. Hansen, H.-C. Hege, C. Hoose, T. Jahns, N. Kalthoff, D. Klocke, S. Kneifel, P. Knippertz, A. Kuhn, T. van Laar, A. Macke, V. Maurer, B. Mayer, C.I. Meyer, S.K. Muppa, R.A.J. Neggers, E. Orlandi, F. Pantillon, B. Pospichal, N. Röber, L. Scheck, A. Seifert, P. Seifert, F. Senf, P. Siligam, C. Simmer, S. Steinke, B. Stevens, K. Wapler, M. Weniger, V. Wulfmeyer, G. Zängl, D. Zhang, J. Quaas: Large-eddy simulations over Germany using ICON: A comprehensive evaluation, Q. J. R. Meteorol. Soc. 143(702), 69–100 (2017)

    Article  Google Scholar 

  • V. Wulfmeyer, H.-S. Bauer, M. Grzeschik, A. Behrendt, F. Vandenberghe, E.V. Browell, S. Ismail, R. Ferrare: Four-dimensional variational assimilation of water-vapor differential absorption lidar data: The first case study within IHOP_2002, Mon. Weather Rev. 134(1), 209–230 (2006)

    Article  Google Scholar 

  • M. Grzeschik, H.-S. Bauer, V. Wulfmeyer, D. Engelbart, U. Wandinger, I. Mattis, D. Althausen, R. Engelmann, M. Tesche, A. Riede: Four-dimensional variational analysis of water-vapor Raman lidar data and their impact on mesoscale forecasts, J. Atmos. Ocean. Technol. 25(8), 1437–1453 (2008)

    Article  Google Scholar 

  • S. Adam, A. Behrendt, T. Schwitalla, E. Hammann, V. Wulfmeyer: First assimilation of temperature lidar data into a numerical weather prediction model: Impact on the simulation of the temperature field, inversion strength, and planetary boundary layer depth, Q. J. R. Meteorol. Soc. 142(700), 2882–2896 (2016)

    Article  Google Scholar 

  • A. Haefele, D. Leuenberger, G. Martucci, M. Arpagaus, R. Thundathil, T. Schwitalla, A. Behrendt, V. Wulfmeyer: Assimilation of temperature and humidity profiles from a Raman lidar into convective-scale NWP models and the impact on the forecast. In: 9th Symp. Lidar Atmos. Appl., Phoenix (2019)

    Google Scholar 

  • R. Thundathil, T. Schwitalla, A. Behrendt, S.K. Muppa, S. Adam, V. Wulfmeyer: Assimilation of lidar water vapour mixing ratio and temperature profiles into a convection-permitting model, J. Meteorol. Soc. Japan 98(5), 959–986 (2020)

    Article  Google Scholar 

  • T.M. Weckwerth, D.B. Parsons, S.E. Koch, J.A. Moore, M.A. LeMone, B.B. Demoz, C. Flamant, B. Geerts, J. Wang, W.F. Feltz: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights, Bull. Am. Meteorol. Soc. 85(2), 253–278 (2004)

    Article  Google Scholar 

  • K.A. Browning, A.M. Blyth, P.A. Clark, U. Corsmeier, C.J. Morcrette, J.L. Agnew, S.P. Ballard, D. Bamber, C. Barthlott, L.J. Bennett, K.M. Beswick, M. Bitter, K.E. Bozier, B.J. Brooks, C.G. Collier, F. Davies, B. Deny, M.A. Dixon, T. Feuerle, R.M. Forbes, C. Gaffard, M.D. Gray, R. Hankers, T.J. Hewison, N. Kalthoff, S. Khodayar, M. Kohler, C. Kottmeier, S. Kraut, M. Kunz, D.N. Ladd, H.W. Lean, J. Lenfant, Z. Li, J. Marsham, J. McGregor, S.D. Mobbs, J. Nicol, E. Norton, D.J. Parker, F. Perry, M. Ramatschi, H.M. Ricketts, N.M. Roberts, A. Russell, H. Schulz, E.C. Slack, G. Vaughan, J. Waight, D.P. Wareing, R.J. Watson, A.R. Webb, A. Wieser: The Convective Storm Initiation Project, Bull. Am. Meteorol. Soc. 88(12), 1939–1956 (2007)

    Article  Google Scholar 

  • V. Wulfmeyer, A. Behrendt, H.-S. Bauer, C. Kottmeier, U. Corsmeier, A. Blyth, G. Craig, U. Schumann, M. Hagen, S. Crewell, P. Di Girolamo, C. Flamant, M. Miller, A. Montani, S. Mobbs, E. Richard, M.W. Rotach, M. Arpagaus, H. Russchenberg, P. Schlüssel, M. König, V. Gärtner, R. Steinacker, M. Dorninger, D.D. Turner, T. Weckwerth, A. Hense, C. Simmer: The Convective and Orographically-induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain region, Bull. Am. Meteorol. Soc. 89(10), 1477–1486 (2008)

    Google Scholar 

  • V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G.C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Arpagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C.N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M.W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D.D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, M. Wirth: The Convective and Orographically Induced Precipitation Study (COPS): The scientific strategy, the field phase, and first highlights, Q. J. R. Meteorol. Soc. 137(S1), 3–30 (2011)

    Article  Google Scholar 

  • A. Macke, P. Seifert, H. Baars, C. Barthlott, C. Beekmans, A. Behrendt, B. Bohn, M. Brueck, J. Bühl, S. Crewell, T. Damian, H. Deneke, S. Düsing, A. Foth, P. Di Girolamo, E. Hammann, R. Heinze, A. Hirsikko, J. Kalisch, N. Kalthoff, S. Kinne, M. Kohler, U. Löhnert, B.L. Madhavan, V. Maurer, S.K. Muppa, J. Schween, I. Serikov, H. Siebert, C. Simmer, F. Späth, S. Steinke, K. Träumner, S. Trömel, B. Wehner, A. Wieser, V. Wulfmeyer, X. Xie: The HD(CP)2 Observational Prototype Experiment (HOPE) – An overview, Atmos. Chem. Phys. 17(7), 4887–4914 (2017)

    Article  Google Scholar 

  • B. Geerts, D. Parsons, C.L. Ziegler, T.M. Weckwerth, M.I. Biggerstaff, R.D. Clark, M.C. Coniglio, B.B. Demoz, R.A. Ferrare, W.A. Gallus, K. Haghi, J.M. Hanesiak, P.M. Klein, K.R. Knupp, K. Kosiba, G.M. McFarquhar, J.A. Moore, A.R. Nehrir, M.D. Parker, J.O. Pinto, R.M. Rauber, R.S. Schumacher, D.D. Turner, Q. Wang, X. Wang, Z. Wang, J. Wurman: The 2015 Plains Elevated Convection at Night Field Project, Bull. Am. Meteorol. Soc. 98(4), 767–786 (2017)

    Article  Google Scholar 

  • V. Wulfmeyer, D.D. Turner, B. Baker, R. Banta, A. Behrendt, T. Bonin, W.A. Brewer, M. Buban, A. Choukulkar, E. Dumas, R.M. Hardesty, T. Heus, J. Ingwersen, D. Lange, T.R. Lee, S. Metzendorf, S.K. Muppa, T. Meyers, R. Newsom, M. Osman, S. Raasch, J. Santanello, C. Senff, F. Späth, T. Wagner, T. Weckwerth: A new research approach for observing and characterizing land-atmosphere feedback, Bull. Am. Meteorol. Soc. 99(8), 1639–1667 (2018)

    Article  Google Scholar 

  • S.H. Melfi, D. Whiteman, R. Ferrare: Observation of atmospheric fronts using Raman lidar moisture measurements, J. Appl. Meteorol. 28(9), 789–806 (1989)

    Article  Google Scholar 

  • B.B. Demoz, D. Starr, K.D. Evans, A.R. Lare, D.N. Whiteman, G. Schwemmer, R.A. Ferrare, J.E.M. Goldsmith, S.E. Bisson: The cold front of 15 April 1994 over the central United States. Part I: Observations, Mon. Weather Rev. 133(6), 1525–1543 (2005)

    Article  Google Scholar 

  • B. Demoz, C. Flamant, D. Miller, K. Evans, F. Fabry, P. Di Girolamo, D. Whiteman, B. Geerts, T. Weckwerth, W. Brown, G. Schwemmer, B. Gentry, W. Feltz, Z. Wang: The dryline on 22 May 2002 during IHOP_2002: Convective-scale measurements at the profiling site, Mon. Weather Rev. 134(1), 294–310 (2006)

    Article  Google Scholar 

  • D.N. Whiteman, K.D. Evans, B. Demoz, D.S. O’C, E.W. Eloranta, D. Tobin, W. Feltz, G.J. Jedlovec, S.I. Gutman, G.K. Schwemmer, M. Cadirola, S.H. Melfi, F.J. Schmidlin: Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie, J. Geophys. Res. 106(D6), 5211–5225 (2001)

    Article  Google Scholar 

  • U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, F. Aoshima, J. Handwerker, C. Kottmeier, H. Mahlke, S. Mobbs, G. Vaughan, J. Wickert, V. Wulfmeyer: Processes driving deep convection over complex terrain: A multi-scale analysis of observations from COPS IOP 9c, Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011)

    Article  Google Scholar 

  • A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, V. Wulfmeyer: Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b, Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011)

    Article  Google Scholar 

  • I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Müller, Y.F. Arshinov, S.M. Bobrovnikov, I.B. Serikov: Relative humidity profiling in the troposphere with a Raman lidar, Appl. Opt. 41(30), 6451–6462 (2002)

    Article  Google Scholar 

  • D.D. Turner, V. Wulfmeyer, L.K. Berg, J.H. Schween: Water vapor turbulence profiles in stationary continental convective mixed layers, J. Geophys. Res. 119(19), 11151–11165 (2014)

    Article  Google Scholar 

  • D.D. Turner, V. Wulfmeyer, A. Behrendt, T.A. Bonin, A. Choukulkar, R. Newsom, W.A. Brewer, D.R. Cook: Response of the land-atmosphere system over north-central Oklahoma during the 2017 eclipse, Geophys. Res. Lett. 45(3), 1668–1675 (2018)

    Article  Google Scholar 

  • J.A. Santanello Jr, P.A. Dirmeyer, C.R. Ferguson, K.L. Findell, A.B. Tawfik, A. Berg, M. Ek, P. Gentine, B.P. Guillod, C. van Heerwaarden, J. Roundy, V. Wulfmeyer: Land–atmosphere interactions: The LoCo Perspective, Bull. Am. Meteorol. Soc. 99(6), 1253–1272 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Wulfmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Wulfmeyer, V., Behrendt, A. (2021). Raman Lidar for Water Vapor and Temperature Profiling. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_25

Download citation

Publish with us

Policies and ethics