Skip to main content

Measurement of Fundamental Aerosol Physical Properties

  • Chapter
Springer Handbook of Atmospheric Measurements

Abstract

Measurements of physical and optical particle properties are essential for evaluating the impact of atmospheric aerosols on atmospheric chemistry, climate, and health. This chapter describes the fundamental equations and conventions pertinent to particle detection and to the measurement of particle number, size, optical properties, and mass. Optical and electrical detection techniques are presented for particle number measurements. An overview of particle light scattering and absorption measurement methods is given. Various measurement principles for determining particle size are introduced, including those based on the optical interaction, aerodynamic behavior, or electrical mobility of particles. Particle mass measurement methods include gravimetric analysis, the vibration of a piezoelectric crystal, harmonic oscillation, and the attenuation of beta radiation. This chapter introduces sensors for measuring particle number, size, light scattering and absorption, and mass, while analysis of the chemical composition of particles will not be covered. General aspects of calibration and quality control are also described, typical technical specifications of the instrumentation are given, and recommendations for the maintenance of atmospheric particle sensors are presented. Finally, the chapter provides examples of applications and current developments in particle measurement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P.A. Solomon, M.P. Fraser, P. Herckes: Methods for chemical analysis of atmospheric aerosols. In: Aerosol Measurement: Principles, Techniques and Applications, 3rd edn., ed. by P. Kulkarni, P.A. Baron, K. Willeke (John Wiley & Sons, Hoboken 2011) pp. 153–177

    Chapter  Google Scholar 

  • C.E. Kolb, D.R. Worsnop: Chemistry and composition of atmospheric aerosol particles, Annu. Rev. Phys. Chem. 63, 471–491 (2012)

    Article  Google Scholar 

  • J.H. Seinfeld, S.N. Pandis: Atmospheric Chemistry and Physics, 3rd edn. (Wiley, New York 2016)

    Google Scholar 

  • A. Wiedensohler, W. Birmili, J.-P. Putaud, J. Ogren: Recommendations for aerosol sampling. In: Aerosol Science: Technology and Applications, ed. by I. Colbeck, M. Lazaridis (Wiley, Chichester 2014) pp. 45–59

    Chapter  Google Scholar 

  • J. Evelyn: Fumifugium (1661) (The Rota at the University of Exeter, Exeter 1976), Reprint, https://archive.org/details/fumifugium00eveluoft, Accessed 07 July 2021

    Google Scholar 

  • P.J. Coulier: Note sur une nouvelle propriete de l’air, J. Pharm. Chim. 22, 165–173 (1875), in French

    Google Scholar 

  • J. Aitken: On dust, fogs, and clouds, Proc. R. Soc. Edinb. 11, 14–18 (1882)

    Article  Google Scholar 

  • J. Aitken: On a simple pocket dust-counter, Proc. R. Soc. Edinb. 18, 39–52 (1892)

    Article  Google Scholar 

  • A. Schmauß, A. Wigand: Die Atmosphäre als Kolloid (Vieweg, Braunschweig 1929), in German

    Book  Google Scholar 

  • N.A. Fuchs: The Mechanics of Aerosols (Pergamon, New York 1964)

    Google Scholar 

  • C.E. Junge: Air Chemistry and Radioactivity (Academic Press, New York 1963)

    Google Scholar 

  • S.K. Friedlander: Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (Wiley, New York 1977)

    Google Scholar 

  • M. Kulmala, V.-M. Kerminen, T. Anttila, A. Laaksonen, C.D. O’Dowd: Organic aerosol formation via sulphate cluster activation, J. Geophys. Res. 109, D04205 (2004)

    Article  Google Scholar 

  • G. Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 330, 377–445 (1908), in German

    Article  Google Scholar 

  • C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim 2004)

    Google Scholar 

  • R. Jaenicke: The optical particle counter: Cross-sensitivity and coincidence, J. Aerosol Sci. 3, 95–111 (1972)

    Article  Google Scholar 

  • H. Koschmieder: Theorie der horizontalen Sichtweite, Contrib. Atmos. Phys. 43, 33–55 (1924)

    Google Scholar 

  • A. Rosencwaig: Photoacoustics and Photoacoustic Spectroscopy (Wiley, Chichester 1980)

    Google Scholar 

  • ISO15900:2009: Determination of Particle Size Distribution – Differential Electrical Mobility Analysis for Aerosol Particles (International Organization for Standardization, Geneva 2009)

    Google Scholar 

  • N.A. Fuchs: On the stationary charge distribution on aerosol particles in bipolar ionic atmosphere, Geofis. Pura Appl. 56, 185–193 (1963)

    Article  Google Scholar 

  • R. Gunn: The hyperelectrification of raindrops by atmospheric electric fields, J. Meteorol. 13, 283–288 (1956)

    Article  Google Scholar 

  • M. Adachi, Y. Kousaka, K. Okuyama: Unipolar and bipolar diffusion charging of ultrafine aerosol particles, J. Aerosol Sci. 16, 109–124 (1985)

    Article  Google Scholar 

  • A. Wiedensohler: An approximation of the bipolar charge distribution for particles in the submicron size range, J. Aerosol Sci. 19, 387–389 (1988)

    Article  Google Scholar 

  • W.C. Hinds: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd edn. (Wiley, New York 1999)

    Google Scholar 

  • P.C. Raynor, D. Leith, K.W. Lee, R. Mukund: Sampling and analysis using filters. In: Aerosol Measurement: Principles, Techniques and Applications, 3rd edn., ed. by P. Kulkarni, P.A. Baron, K. Willeke (John Wiley & Sons, Hoboken 2011) pp. 107–128

    Chapter  Google Scholar 

  • G. Sauerbrey: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z. Phys. 55, 206–222 (1959), in German

    Google Scholar 

  • K.T. Whitby: The physical characteristics of sulfur aerosol, Atmos. Environ. 12, 135–159 (1978)

    Article  Google Scholar 

  • P. Kulkarni, P.A. Baron, K. Willeke (Eds.): Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn. (John Wiley & Sons, Hoboken 2011)

    Google Scholar 

  • WMO: WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations, 2nd edn. (WMO, Geneva 2016), GAW Report No. 227, WMO-No. 1177

    Google Scholar 

  • F.T. Gucker Jr., C.T. O’Konski, H.B. Pickard, J.N. Pitts Jr.: A photoelectronic counter for colloidal particles, J. Am. Chem. Soc. 69, 2422–2431 (1947)

    Article  Google Scholar 

  • F.T. Gucker Jr., H.B. Pickard, C.T. O’Konski: A photoelectric instrument for comparing concentrations of very dilute aerosols and measuring very low light intensities, J. Am. Chem. Soc. 69, 429–438 (1947)

    Article  Google Scholar 

  • P. McMurry: A review of atmospheric aerosol measurements, Atmos. Environ. 34, 1959–1999 (2000)

    Article  Google Scholar 

  • P.H. Kaye, N.A. Eyles, I.K. Ludlow, J.M. Clark: An instrument for the classification of airborne particles on the basis of size, shape, and count frequency, Atmos. Environ. 25, 645–654 (1991)

    Article  Google Scholar 

  • D. Sinclair, G.S. Hoopes: A continuous flow condensation nucleus counter, J. Aerosol Sci. 6, 1–7 (1975)

    Article  Google Scholar 

  • J. Bricard, P. Delattre, G. Madelaine, M. Pourprix: Detection of ultra-fine particles by means of a continuous flux condensation nuclei counter. In: Fine Particles, ed. by B.Y.H. Liu (Academic Press, New York 1976) pp. 566–580

    Google Scholar 

  • J.K. Agarwal, G.J. Sem: Continuous flow, single-particle-counting condensation nucleus counter, J. Aerosol Sci. 11, 343–357 (1980)

    Article  Google Scholar 

  • J. Wang, V.F. McNeill, D.R. Collins, R.C. Flagan: Fast mixing condensation nucleus counter: Application to rapid scanning differential mobility analyzer measurements, Aerosol Sci. Technol. 36, 678–689 (2002)

    Article  Google Scholar 

  • B. Wehner, H. Siebert, M. Hermann, F. Ditas, A. Wiedensohler: Characterisation of a new fast CPC and its application for atmospheric particle measurements, Atmos. Meas. Tech. 4, 823–833 (2011)

    Article  Google Scholar 

  • K. Iida, M.R. Stolzenburg, P.H. McMurry: Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter, Aerosol Sci. Technol. 43, 81–96 (2009)

    Article  Google Scholar 

  • J. Vanhanen, J. Mikkilä, K. Lehtipalo, M. Sipilä, H.E. Manninen, E. Siivola, T. Petäjä, M. Kulmala: Particle size magnifier for nano-CN detection, Aerosol Sci. Technol. 45, 533–542 (2011)

    Article  Google Scholar 

  • R.G. Beuttell, A.W. Brewer: Instruments for the measurement of the visual range, J. Sci. Instrum. 26, 357–359 (1949)

    Article  Google Scholar 

  • J. Heintzenberg, R.J. Charlson: Design and applications of the integrating nephelometer: A review, J. Atmos. Ocean. Technol. 13, 987–1000 (1996)

    Article  Google Scholar 

  • C.I. Lin, M.B. Baker, R.J. Charlson: Absorption coefficient of atmospheric aerosol: A method for measurement, Appl. Opt. 12, 1356–1363 (1973)

    Article  Google Scholar 

  • A.D.A. Hansen, H. Rosen, T. Novakov: The aethelometer – An instrument for the real-time measurement of optical absorption by aerosol particles, Sci. Total Environ. 36, 191–196 (1984)

    Article  Google Scholar 

  • T.C. Bond, T.L. Anderson, D. Campbell: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols, Aerosol Sci. Technol. 30, 582–600 (1999)

    Article  Google Scholar 

  • A. Petzold, M. Schönlinner: Multi-angle absorption photometry – A new method for the measurement of aerosol light absorption and atmospheric black carbon, J. Aerosol Sci. 35, 421–441 (2004)

    Article  Google Scholar 

  • P.L. Kebabian, W.A. Robinson, A. Freedman: Optical extinction monitor using cw cavity enhanced detection, Rev. Sci. Instrum. 78, 063102 (2007)

    Article  Google Scholar 

  • J.G. Slowik, E.S. Cross, J.-H. Han, P. Davidovits, T.B. Onasch, J.T. Jayne, L.R. Williams, M.R. Canagaratna, D.R. Worsnop, R.K. Chakrabarty, H. Moosmüller, W.P. Arnott, J.P. Schwarz, R.-S. Gao, D.W. Fahey, G.L. Kok, A. Petzold: An inter-comparison of instruments measuring black carbon content of soot particles, Aerosol Sci. Technol. 41, 295–314 (2007)

    Article  Google Scholar 

  • C.W. Bruce, R.G. Pinnick: In-situ measurements of aerosol absorption with a resonant cw laser spectrophone, Appl. Opt. 16, 1762–1765 (1977)

    Article  Google Scholar 

  • R.W. Terhune, J.E. Anderson: Spectrophone measurements of the absorption of visibile light by aerosols in the atmosphere, Opt. Lett. 1, 70–72 (1977)

    Article  Google Scholar 

  • K.M. Adams, L.I. Davis Jr., S.M. Japar, W.R. Pierson: Real time, in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy – II. Validation for atmospheric elemental carbon aerosol, Atmos. Environ. 23, 693–700 (1989)

    Article  Google Scholar 

  • A. Petzold, R. Niessner: Novel design of resonant photoacoustic spectrophone for elemental carbon mass monitoring, Appl. Phys. Lett. 66, 1285–1287 (1995)

    Article  Google Scholar 

  • T. Ajtai, A. Filep, M. Schnaiter, C. Linke, M. Vragel, Z. Bozóki, G. Szabó, T. Leisner: A novel multi-wavelength photoacoustic spectrometer for the measurement of the UV–vis-NIR spectral absorption coefficient of atmospheric aerosols, J. Aerosol Sci. 41, 1020–1029 (2010)

    Article  Google Scholar 

  • B.Y.H. Liu, D.Y.H. Pui: A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter, J. Colloid Interface Sci. 47, 155–171 (1974)

    Article  Google Scholar 

  • B.Y.H. Liu, D.Y.H. Pui: Electrical neutralization of aerosols, J. Aerosol Sci. 5, 465–472 (1974)

    Article  Google Scholar 

  • K.T. Whitby, W.E. Clark: Electric aerosol particle counting and size distribution measuring system for the 0.015 to 1 μ size range, Tellus 18, 573–586 (1966)

    Google Scholar 

  • E.O. Knutson, K.T. Whitby: Aerosol classification by electric mobility: Apparatus, theory, and application, J. Aerosol Sci. 6, 443–451 (1975)

    Article  Google Scholar 

  • L. Tigges, A. Wiedensohler, K. Weinhold, J. Gandhi, H.-J. Schmid: Bipolar charge distribution of a soft X-ray diffusion charger, J. Aerosol Sci. 90, 77–86 (2015)

    Article  Google Scholar 

  • S.C. Wang, R.C. Flagan: Scanning electrical mobility spectrometer, Aerosol Sci. Technol. 13, 230–240 (1990)

    Article  Google Scholar 

  • S.H. Zhang, Y. Akutsu, L.M. Russell, R.C. Flagan, J.H. Seinfeld: Radial differential mobility analyzer, Aerosol Sci. Technol. 23, 357–372 (1995)

    Article  Google Scholar 

  • A. Wiedensohler, W. Birmili, A. Nowak, A. Sonntag, K. Weinhold, M. Merkel, B. Wehner, T. Tuch, S. Pfeifer, M. Fiebig, A.M. Fjäraa, E. Asmi, K. Sellegri, R. Depuy, H. Venzac, P. Villani, P. Laj, P. Aalto, J.A. Ogren, E. Swietlicki, P. Williams, P. Roldin, P. Quincey, C. Hüglin, R. Fierz-Schmidhauser, M. Gysel, E. Weingartner, F. Riccobono, S. Santos, C. Grüning, K. Faloon, D. Beddows, R. Harrison, C. Monahan, S.G. Jennings, C.D. O’Dowd, A. Marioni, H.-G. Horn, L. Keck, J. Jiang, J. Scheckman, P.H. McMurry, Z. Deng, C.S. Zhao, M. Moerman, B. Henzing, G. de Leeuw, G. Löschau, S. Bastian: Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech. 5, 657–685 (2012)

    Article  Google Scholar 

  • E. Asmi, M. Sipilä, H.E. Manninen, J. Vanhanen, K. Lehtipalo, S. Gagné, K. Neitola, A. Mirme, S. Mirme, E. Tamm, J. Uin, K. Komsaare, M. Attoui, M. Kulmala: Results of the first air ion spectrometer calibration and intercomparison workshop, Atmos. Chem. Phys. 9, 141–154 (2009)

    Article  Google Scholar 

  • H. Tammet, A. Mirme, E. Tamm: Electrical aerosol spectrometer of Tartu University, Atmos. Res. 62, 315–324 (2002)

    Article  Google Scholar 

  • P.G. Gormley, M. Kennedy: Diffusion from a stream flowing through a cylindrical tube, Proc. R. Ir. Acad. 52, 163–169 (1949)

    Google Scholar 

  • D. Sinclair, G.S. Hoopes: A novel form of diffusion battery, Am. Ind. Hyg. Assoc. J. 36, 39–42 (1975)

    Article  Google Scholar 

  • M. Fierz, H. Burtscher, P. Steigmeier, M. Kasper: Field Measurement of Particle Size and Number Concentration with the Diffusion Size Classifier (DiSC) (SAE International, Warrendale 2008), SAE Tech. Paper 2008-01-1179

    Google Scholar 

  • S. Pfeifer, T. Müller, K. Weinhold, N. Zikova, S. Martins dos Santos, A. Marinoni, O.F. Bischof, C. Kykal, L. Ries, F. Meinhardt, P. Aalto, N. Mihalopoulos, A. Wiedensohler: Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): Uncertainties in particle sizing and number size distribution, Atmos. Meas. Tech. 9, 1545–1551 (2016)

    Article  Google Scholar 

  • J. Keskinen, K. Pietarinen, M. Lehtimäki: Electrical low pressure impactor, J. Aerosol Sci. 23, 353–360 (1992)

    Article  Google Scholar 

  • M.J. Deventer, L. von der Heyden, C. Lamprecht, M. Graus, T. Karl, A. Held: Aerosol particles during the Innsbruck Air Quality Study (INNAQS): Fluxes of nucleation to accumulation mode particles in relation to selective urban tracers, Atmos. Environ. 190, 376–388 (2018)

    Article  Google Scholar 

  • O.G. Raabe, D.A. Braaten, R.L. Axelbaum, S.V. Teague, T.A. Cahill: Calibration studies of the DRUM impactor, J. Aerosol Sci. 19, 183–195 (1988)

    Article  Google Scholar 

  • V.A. Marple, K.L. Rubow, S.M. Behm: A Microorifice Uniform Deposit Impactor (MOUDI): Description, calibration, and use, Aerosol Sci. Technol. 14, 434–446 (1991)

    Article  Google Scholar 

  • M. Chen, F.J. Romay, L. Lin, A. Naqwi, V.A. Marple: A novel quartz crystal cascade impactor for real-time aerosol mass distribution measurement, Aerosol Sci. Technol. 50, 971–983 (2016)

    Article  Google Scholar 

  • J.C. Chow: Measurement methods to determine compliance with ambient air quality standards for suspended particles, J. Air Waste Manag. Assoc. 45, 320–382 (1995)

    Article  Google Scholar 

  • D.A. Lundgren, L.D. Carter, P.S. Daley: Aerosol mass measurement using piezoelectric crystal sensors. In: Fine Particles, ed. by B.Y.H. Liu (Academic Press, New York 1976) pp. 485–510

    Chapter  Google Scholar 

  • H. Patashnick, E.G. Rupprecht: Continuous PM-10 measurements using the tapered element oscillating microbalance, J. Air Waste Manag. Assoc. 41, 1079–1083 (1991)

    Article  Google Scholar 

  • R.B. Husar: Atmospheric particulate mass monitoring with a beta radiation detector, Atmos. Environ. 8, 183–188 (1974)

    Article  Google Scholar 

  • M. Kulmala, G. Mordas, T. Petäjä, T. Grönholm, P.P. Aalto, H. Vehkamäki, A.I. Hienola, E. Herrmann, M. Sipilä, I. Riipinen, H.E. Manninen, K. Hämeri, F. Stratmann, M. Bilde, P.M. Winkler, W. Birmili, P.E. Wagner: The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles, J. Aerosol Sci. 38, 289–304 (2007)

    Article  Google Scholar 

  • D. Stolzenburg, G. Steiner, P.M. Winkler: A DMA-train for precision measurement of sub-10 nm aerosol dynamics, Atmos. Meas. Tech. 10, 1639–1651 (2017)

    Article  Google Scholar 

  • D.J. Rader, P.H. McMurry: Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation, J. Aerosol Sci. 17, 771–787 (1986)

    Article  Google Scholar 

  • J. Ristimäki, A. Virtanen, M. Marjamäki, A. Rostedt, J. Keskinen: On-line measurement of size distribution and effective density of submicron aerosol particles, J. Aerosol Sci. 33, 1541–1557 (2002)

    Article  Google Scholar 

  • A. Virtanen, J. Ristimäki, J. Keskinen: Method for measuring effective density and fractal dimension of aerosol agglomerates, Aerosol Sci. Technol. 38, 437–446 (2004)

    Article  Google Scholar 

  • B. Sarangi, S.G. Aggarwal, D. Sinha, P.K. Gupta: Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty, Atmos. Meas. Tech. 9, 859–875 (2016)

    Article  Google Scholar 

  • CEN/TS 16976:2016: Ambient Air – Determination of the Particle Number Concentration of Atmospheric Aerosol (European Committee for Standardization, Brussels 2016)

    Google Scholar 

  • R. Högström, P. Quincey, D. Sarantaridis, F. Lüönd, A. Nowak, F. Riccobono, T. Tuch, H. Sakurai, M. Owen, M. Heinonen, J. Keskinen, J. Yli-Ojanperä: First comprehensive inter-comparison of aerosol electrometers for particle sizes up to 200 nm and concentration range 1000 cm−3 to 17000 cm−3, Metrologia 51, 293–303 (2014)

    Article  Google Scholar 

  • A. Wiedensohler, A. Wiesner, K. Weinhold, W. Birmili, M. Hermann, M. Merkel, T. Müller, S. Pfeifer, A. Schmidt, T. Tuch, F. Velarde, P. Quincey, S. Seeger, A. Nowak: Mobility particle size spectrometers: Calibration procedures and measurement uncertainties, Aerosol Sci. Technol. 52, 146–164 (2018)

    Article  Google Scholar 

  • T. Müller, J.S. Henzing, G. de Leeuw, A. Wiedensohler, A. Alastuey, H. Angelov, M. Bizjak, M. Collaud Coen, J.E. Engström, C. Gruening, R. Hillamo, A. Hoffer, K. Imre, P. Ivanow, G. Jennings, J.Y. Sun, N. Kalivitis, H. Karlsson, M. Komppula, P. Laj, S.-M. Li, C. Lunder, A. Marinoni, S. Martins dos Santos, M. Moerman, A. Nowak, J.A. Ogren, A. Petzold, J.M. Pichon, S. Rodriquez, S. Sharma, P.J. Sheridan, K. Teinilä, T. Tuch, M. Viana, A. Virkkula, E. Weingartner, R. Wilhelm, Y.Q. Wang: Characterization and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops, Atmos. Meas. Tech. 4, 245–268 (2011)

    Article  Google Scholar 

  • J.A. Ogren (Ed.): WMO/GAW Standard Operating Procedures for In-Situ Measurements of Aerosol Mass Concentration, Light Scattering and Light Absorption (WMO, Geneva 2011), GAW Report No. 200

    Google Scholar 

  • ISO 27891:2015: Aerosol Particle Number Concentration – Calibration of Condensation Particle Counters (International Organization for Standardization, Geneva 2015)

    Google Scholar 

  • D. Baumgardner, O. Popovicheva, J. Allan, V. Bernardoni, J. Cao, F. Cavalli, J. Cozic, E. Diapouli, K. Eleftheriadis, P.J. Genberg, C. Gonzalez, M. Gysel, A. John, T.W. Kirchstetter, T.A.J. Kuhlbusch, M. Laborde, D. Lack, T. Müller, R. Niessner, A. Petzold, A. Piazzalunga, J.P. Putaud, J. Schwarz, P. Sheridan, R. Subramanian, E. Swietlicki, G. Valli, R. Vecchi, M. Viana: Soot reference materials for instrument calibration and intercomparisons: A workshop summary with recommendations, Atmos. Meas. Tech. 5, 1869–1887 (2012)

    Article  Google Scholar 

  • E. Weingartner, H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, U. Baltensperger: Absorption of light by soot particles: Determination of the absorption by means of aethalometers, J. Aerosol Sci. 34, 1445–1463 (2003)

    Article  Google Scholar 

  • J.T. Jayne, D.C. Leard, X. Zhang, P. Davidovits, K.A. Smith, C.E. Kolb, D.R. Worsnop: Development of an aerosol mass spectrometer for size and composition analysis of submicron particles, Aerosol Sci. Technol. 33, 49–70 (2000)

    Article  Google Scholar 

  • H. Junninen, M. Ehn, T. Petäjä, L. Luosujärvi, T. Kotiaho, R. Kostiainen, U. Rohner, M. Gonin, K. Fuhrer, M. Kulmala, D.R. Worsnop: A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech. 3, 1039–1053 (2010)

    Article  Google Scholar 

  • W. Lindinger, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): On-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27, 347–354 (1998)

    Article  Google Scholar 

  • M.W. Gallagher, K.M. Beswick, J. Duyzer, H. Westrate, T.W. Choularton, P. Hummelshoj: Measurements of aerosol fluxes to Speulder Forest using a micrometeorological technique, Atmos. Environ. 31, 359–373 (1997)

    Article  Google Scholar 

  • R.J. Vong, I.J. Vong, D. Vickers, D.S. Covert: Size-dependent aerosol deposition velocities during BEARPEX’07, Atmos. Chem. Phys. 10, 5749–5758 (2010)

    Article  Google Scholar 

  • M. Conte, A. Donateo, D. Contini: Characterisation of particle size distributions and corresponding size-segregated turbulent fluxes simultaneously with CO2 exchange in an urban area, Sci. Total Environ. 622/623, 1067–1078 (2018)

    Article  Google Scholar 

  • A. Schmidt, O. Klemm: Direct determination of highly size-resolved turbulent particle fluxes with the disjunct eddy covariance method and a 12-stage electrical low pressure impactor, Atmos. Chem. Phys. 8, 7405–7417 (2008)

    Article  Google Scholar 

  • E. Nemitz, J.L. Jimenez, A. Huffman, I.M. Ulbrich, M.R. Canagaratna, D.R. Worsnop, A.B. Guenther: An eddy covariance system for the measurement of surface/atmosphere exchange fluxes of submicron aerosol chemical species – First application above an urban area, Aerosol Sci. Technol. 42, 636–657 (2008)

    Article  Google Scholar 

  • R.M. Harrison, M. Dall’Osto, D.C.S. Beddows, A.J. Thorpe, W.J. Bloss, J.D. Allan, H. Coe, J.R. Dorsey, M. Gallagher, C. Martin, J. Whitehead, P.I. Williams, R.L. Jones, J.M. Langridge, A.K. Benton, S.M. Ball, B. Langford, C.N. Hewitt, B. Davison, D. Martin, K.F. Petersson, S.J. Henshaw, I.R. White, D.E. Shallcross, J.F. Barlow, T. Dunbar, F. Davies, E. Nemitz, G.J. Phillips, C. Helfter, C.F. Di Marco, S. Smith: Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): An overview of the REPARTEE experiment and its conclusions, Atmos. Chem. Phys. 12, 3065–3114 (2012)

    Article  Google Scholar 

  • C.A. Pope III, D.W. Dockery: Health effects of fine particulate air pollution: Lines that connect, J. Air Waste Manag. Assoc. 56, 709–742 (2006)

    Article  Google Scholar 

  • ISO 7708:1995: Air Quality – Particle Size Fraction Definitions for Health-Related Sampling (International Organization for Standardization, Geneva 1995)

    Google Scholar 

  • Health Effects Institute: HEI Perspectives 3 – Understanding the Health Effects of Ambient Ultrafine Particles (HEI, Boston 2013)

    Google Scholar 

  • J.J. Schauer, W.F. Rogge, L.M. Hildemann, M.A. Mazurek, G.R. Cass, B.R.T. Simoneit: Source apportionment of airborne particulate matter using organic compounds as tracers, Atmos. Environ. 30, 3837–3855 (1996)

    Article  Google Scholar 

  • NASA: AERONET (AErosol RObotic NETwork), https://aeronet.gsfc.nasa.gov/ (2020), Accessed 07 July 2021

  • B.N. Holben, D. Tanre, A. Smirnov, T.F. Eck, I. Slutsker, N. Abuhassan, W.W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y.J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N.T. O’Neill, C. Pietras, R.T. Pinker, K. Voss, G. Zibordi: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET, J. Geophys. Res. 106, 12067–12097 (2001)

    Article  Google Scholar 

  • A. Benedetti, J.-J. Morcrette, O. Boucher, A. Dethof, R. Engelen, M. Fisher, H. Flentje, N. Huneeus, L. Jones, J. Kaiser, S. Kinne, A. Mangold, M. Razinger, A. Simmons, M. Suttie: Aerosol analysis and forecast in the ECMWF Integrated Forecast System: 2. Data assimilation, J. Geophys. Res. 114, D13205 (2009)

    Article  Google Scholar 

  • J. Flemming, A. Benedetti, A. Inness, R.J. Engelen, L. Jones, V. Huijnen, S. Remy, M. Parrington, M. Suttie, A. Bozzo, V.-H. Peuch, D. Akritidis, E. Katragkou: The CAMS interim reanalysis of carbon monoxide, ozone and aerosol for 2003–2015, Atmos. Chem. Phys. 17, 1945–1983 (2017)

    Article  Google Scholar 

  • J.H. Seinfeld, C. Bretherton, K.S. Carslaw, H. Coe, P.J. DeMott, E.J. Dunlea, G. Feingold, S. Ghan, A.B. Guenther, R. Kahn, I. Kraucunas, S.M. Kreidenweis, M.J. Molina, A. Nenes, J.E. Penner, K.A. Prather, V. Ramanathan, V. Ramaswamy, P.J. Rasch, A.R. Ravishankara, D. Rosenfeld, G. Stephens, R. Wood: Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system, Proc. Natl. Acad. Sci. U. S. A. 113, 5781–5790 (2016)

    Article  Google Scholar 

  • U. Dusek, G.P. Frank, L. Hildebrandt, J. Curtius, J. Schneider, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, S. Borrmann, M.O. Andreae: Size matters more than chemistry for cloud-nucleating ability of aerosol particles, Science 312, 1375–1378 (2006)

    Article  Google Scholar 

  • F. Snik, J.H.H. Rietjens, A. Apituley, H. Volten, B. Mijling, A. Di Noia, S. Heikamp, R.C. Heinsbroek, O.P. Hasekamp, J.M. Smit, J. Vonk, D.M. Stam, G. van Harten, J. de Boer, C.U. Keller, and 3187 iSPEX citizen scientists: Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters, Geophys. Res. Lett. 41, 7351–7358 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Held .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Held, A., Mangold, A. (2021). Measurement of Fundamental Aerosol Physical Properties. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_18

Download citation

Publish with us

Policies and ethics