Abstract
We introduce a unified framework for the study of multilevel mixed integer linear optimization problems and multistage stochastic mixed integer linear optimization problems with recourse. The framework highlights the common mathematical structure of the two problems and allows for the development of a common algorithmic framework. Focusing on the two-stage case, we investigate, in particular, the nature of the value function of the second-stage problem, highlighting its connection to dual functions and the theory of duality for mixed integer linear optimization problems, and summarize different reformulations. We then present two main solution techniques, one based on a Benders-like decomposition to approximate either the risk function or the value function, and the other one based on cutting plane generation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
When the value function is not real-valued everywhere, we have to show that there is a real-valued function that coincides with the value function when it is real-valued and is itself real-valued everywhere else, but is still a feasible dual function (see [140]).
References
E. Amaldi, A. Capone, S. Coniglio, L.G. Gianoli, Energy-aware traffic engineering with elastic demands and MMF bandwidth allocation, in Proc of 18th IEEE Int. Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD 2013) (IEEE, Piscataway, 2013), pp. 169–174
E. Amaldi, A. Capone, S. Coniglio, L.G. Gianoli, Network optimization problems subject to max-min fair flow allocation. IEEE Commun. Lett. 17(7), 1463–1466 (2013)
E. Amaldi, S. Coniglio, L.G. Gianoli, C.U. Ileri, On single-path network routing subject to max-min fair flow allocation. Electron Notes Discrete Math. 41, 543–550 (2013)
E. Amaldi, S. Coniglio, L. Taccari, Maximum throughput network routing subject to fair flow allocation, in Proc. of Int. Symp. on Combinatorial Optimization (ISCO 2014) (Springer, Berlin, 2014), pp. 1–12
M.A. Amouzegar, K. Moshirvaziri, Determining optimal pollution control policies: an application of bilevel programming. Eur. J. Oper. Res. 119(1), 100–120 (1999)
B. An, J. Pita, E. Shieh, M. Tambe, C. Kiekintveld, J. Marecki, Guards and protect: next generation applications of security games. ACM SIGecom Exch. 10(1), 31–34 (2011)
R. Avenhaus, A. Okada, S. Zamir, Inspector leadership with incomplete information, in Game Equilibrium Models IV (Springer, Berlin, 1991), pp. 319–361
J. Bard, An algorithm for solving the general bilevel programming problem. Math. Oper. Res. 8(2), 260–272 (1983)
J. Bard, J.T. Moore, An algorithm for the discrete bilevel programming problem. Nav. Res. Logist. 39(3), 419–435 (1992)
J.F. Bard, J. Plummer, J.C. Sourie, A bilevel programming approach to determining tax credits for biofuel production. Eur. J. Oper. Res. 120, 30–46 (2000)
L. Baringo, A.J. Conejo, Transmission and wind power investment. IEEE Trans. Power Syst. 27(2), 885–893 (2012)
N. Basilico, S. Coniglio, N. Gatti, Methods for finding leader-follower equilibria with multiple followers (extended abstract), in Proc. of 2016 Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2016) (2016), pp. 1363–1364
N. Basilico, S. Coniglio, N. Gatti, A. Marchesi, Bilevel programming approaches to the computation of optimistic and pessimistic single-leader-multi-follower equilibria, in Proc. of 16th Int. Symp. on Experimental Algorithms (SEA 2017) (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, 2017)
N. Basilico, S. Coniglio, N. Gatti, A. Marchesi, Bilevel programming methods for computing single-leader-multi-follower equilibria in normal-form and polymatrix games. EURO J. Comput. Optim. 8, 3–31 (2020)
O. Ben-Ayed, C. Blair, Computational difficulties of bilevel linear programming. Oper. Res. 38, 556–560 (1990)
O. Ben-Ayed, C. Blair, D. Boyce, L. LeBlanc, Construction of a real-world bilevel linear programming model of the highway network design problem. Ann. Oper. Res. 34(1), 219–254 (1992)
D.P. Bertsekas, Dynamic Programming and Optimal Control (Athena Scientific, Belmont, 2017)
J.R. Birge, F. Louveaux, Introduction to Stochastic Programming (Springer Science & Business Media, New York, 2011)
C.E. Blair, A closed-form representation of mixed-integer program value functions. Math. Program. 71(2), 127–136 (1995)
C.E. Blair, R.G. Jeroslow, The value function of a mixed integer program: I. Discret. Math. 19(2), 121–138 (1977)
C.E. Blair, R.G. Jeroslow, The value function of a mixed integer program: II. Discret. Math. 25(1), 7–19 (1979)
C.E. Blair, R.G. Jeroslow, Constructive characterizations of the value-function of a mixed-integer program I. Discret. Appl. Math. 9(3), 217–233 (1984)
S. Bolusani, T.K. Ralphs, A framework for generalized Benders’ decomposition and its application to multilevel optimization. Technical report 20T-004, COR@L Laboratory, Lehigh University, 2020. http://coral.ie.lehigh.edu/~ted/files/papers/MultilevelBenders20.pdf
J. Bracken, J.T. McGill, Mathematical programs with optimization problems in the constraints. Oper. Res. 21(1), 37–44 (1973)
A.P. Burgard, P. Pharkya, C.D. Maranas, OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003)
P. Calamai, L. Vicente, Generating quadratic bilevel programming problems. ACM Trans. Math. Softw. 20, 103–119 (1994)
A. Caprara, M. Carvalho, A. Lodi, G. Woeginger, Bilevel knapsack with interdiction constraints. INFORMS J. Comput. 28(2), 319–333 (2016)
M. Caramia, R. Mari, Enhanced exact algorithms for discrete bilevel linear problems. Optim. Lett. 9(7), 1447–1468 (2015)
C.C. Carøe, J. Tind, L-shaped decomposition of two-stage stochastic programs with integer recourse. Math. Program. 83(1), 451–464 (1998)
M. Castiglioni, A. Marchesi, N. Gatti, Be a leader or become a follower: the strategy to commit to with multiple leaders, in Proc. of 28th Int. Joint Conf. on Artificial Intelligence (IJCAI 2019) (2019)
M. Castiglioni, A. Marchesi, N. Gatti, S. Coniglio, Leadership in singleton congestion games: what is hard and what is easy. Artif. Intell. 277, 103–177 (2019)
A. Celli, S. Coniglio, N. Gatti, Computing optimal ex ante correlated equilibria in two-player sequential games, in Proc. of 18th Int. Conf. on Autonomous Agents and MultiAgent Systems (AAMAS 2019) (International Foundation for Autonomous Agents and Multiagent Systems, Richland, 2019), pp. 909–917
A. Celli, S. Coniglio, N. Gatti, Private Bayesian persuasion with sequential games, in Proc. of 34th AAAI Conf. on Artificial Intelligence (AAAI 2020) (AAAI Press, New York, 2020), pp. 1–8
R.L. Church, M.P. Scaparra, Protecting critical assets: the r-interdiction median problem with fortification. Geogr. Anal. 39(2), 129–146 (2006)
R.L. Church, M.P. Scaparra, R.S. Middleton, Identifying critical infrastructure: the median and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)
P.A. Clark, A.W. Westerberg, Bilevel programming for steady-state chemical process design I. Fundamentals and algorithms. Comput. Chem. Eng. 14(1), 87–97 (1990)
B. Colson, P. Marcotte, G. Savard, Bilevel programming: a survey. 4OR 3(2), 87–107 (2005)
S. Coniglio, S. Gualandi, On the separation of topology-free rank inequalities for the max stable set problem, in Proc. of 16th Int. Symp. on Experimental Algorithms (SEA 2017) (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, 2017)
S. Coniglio, L.G. Gianoli, E. Amaldi, A. Capone, Elastic Traffic Engineering Subject to a Fair Bandwidth Allocation via Bilevel Programming, in IEEE/ACM Transactions on Networking, https://doi.org/10.1109/TNET.2020.3007572
S. Coniglio, M. Tieves, On the generation of cutting planes which maximize the bound improvement, in Proc. of 14th Int. Symp. on Experimental Algorithms (SEA 2015) (Springer, Berlin, 2015), pp. 97–109
S. Coniglio, N. Gatti, A. Marchesi, Pessimistic leader-follower equilibria with multiple followers, in Proc. of 26th Int. Joint Conf. on Artificial Intelligence (IJCAI 2017) (AAAI Press, New York, 2017), pp. 171–177
S. Coniglio, N. Gatti, A. Marchesi, Computing a pessimistic Stackelberg equilibrium with multiple followers: the mixed-pure case. Algorithmica 82, 1189–1238 (2020)
S. Coniglio, M. Sirvent, M. Weibelzahl, Airport capacity extension, fleet investment, and optimal aircraft scheduling in a multi-level market model: quantifying the costs of imperfect markets (2020, under review). http://www.optimization-online.org/DB_HTML/2017/05/5989.html
V. Conitzer, D. Korzhyk, Commitment to correlated strategies, in Proc. of 25th AAAI Conf. on Artificial Intelligence (AAAI 2011) (2011), pp. 632–637
V. Conitzer, T. Sandholm, Computing the optimal strategy to commit to, in Proc. of 7th ACM Conf. on Electronic Commerce (EC 2006) (2006), pp. 82–90
S.A. Cook, The complexity of theorem-proving procedures, in Proc. of 3rd Annual ACM Symposium on Theory of Computing (ACM, New York, 1971), pp. 151–158
K.J. Cormican, D.P. Morton, R.K. Wood, Stochastic network interdiction. Oper. Res. 46(2), 184–197 (1998)
J.-P. Côté, P Marcotte, G. Savard, A bilevel modelling approach to pricing and fare optimisation in the airline industry. J. Revenue Pricing Manag. 2(1), 23–36 (2003)
S. Dempe, Discrete bilevel optimization problems. Technical Report D-04109, Institut fur Wirtschaftsinformatik, Universitat Leipzig, Leipzig, 2001
S. Dempe, F. Mefo Kue, Solving discrete linear bilevel optimization problems using the optimal value reformulation. J. Glob. Optim. 68(2), 255–277 (2017)
S. Dempe, V. Kalashnikov, R.Z. Rios-Mercado, Discrete bilevel programming: application to a natural gas cash-out problem. Eur. J. Oper. Res. 166(2), 469–488 (2005)
S. DeNegre, Interdiction and discrete bilevel linear programming. PhD, Lehigh University, 2011 http://coral.ie.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf
S. DeNegre, T.K. Ralphs, A branch-and-cut algorithm for bilevel integer programming, in Proc. of 11th INFORMS Computing Society Meeting (2009), pp. 65–78. http://coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf
K. Dhamdhere, R. Ravi, M. Singh, On two-stage stochastic minimum spanning trees, in International Conference on Integer Programming and Combinatorial Optimization (Springer, Berlin, 2005), pp. 321–334
M. Dyer, L. Stougie, Computational complexity of stochastic programming problems. Math. Program. 106(3), 423–432 (2006)
N.P. Faísca, V. Dua, B. Rustem, P.M. Saraiva, E.N. Pistikopoulos, Parametric global optimisation for bilevel programming. J. Glob. Optim. 38, 609–623 (2007)
M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl, A new general-purpose algorithm for mixed-integer bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017)
M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl, On the use of intersection cuts for bilevel optimization. Math. Program. 172, 77–103 (2018)
F. Furini, I. Ljubic, S. Martin, P. San Segundo, The maximum clique interdiction game. Eur. J. Oper. Res. 277(1), 112–127 (2019)
D. Gade, S. Küçükyavuz, S. Sen, Decomposition algorithms with parametric gomory cuts for two-stage stochastic integer programs. Math. Program. 144, 1–26 (2012)
J. Gan, E. Elkind, M. Wooldridge, Stackelberg security games with multiple uncoordinated defenders, in Proc. of 17th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008) (2018)
L.P. Garcés, A.J. Conejo, R. García-Bertrand, R. Romero, A bilevel approach to transmission expansion planning within a market environment. IEEE Trans. Power Syst. 24(3), 1513–1522 (2009)
M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, New York, 1979)
M. Gendreau, G. Laporte, R. Séguin, Stochastic vehicle routing. Eur. J. Oper. Res. 88(1), 3–12 (1996)
P.M. Ghare, D.C. Montgomery, W.C. Turner, Optimal interdiction policy for a flow network. Nav. Res. Logist. Q. 18, 27–45 (1971)
I.L. Gørtz, V. Nagarajan, R. Saket, Stochastic vehicle routing with recourse, in International Colloquium on Automata, Languages, and Programming (Springer, Berlin, 2012), pp. 411–423
E. Grass, K. Fischer, Two-stage stochastic programming in disaster management: a literature survey. Surv. Oper. Res. Manag. Sci. 21(2), 85–100 (2016)
V. Grimm, A. Martin, M. Martin, M. Weibelzahl, G. Zöttl, Transmission and generation investment in electricity markets: the effects of market splitting and network fee regimes. Eur. J. Oper. Res. 254(2), 493–509 (2016)
A. Gupta, R. Ravi, A. Sinha, Lp rounding approximation algorithms for stochastic network design. Math. Oper. Res. 32(2), 345–364 (2007)
M. Güzelsoy, Dual methods in mixed integer linear programming. PhD, Lehigh University, 2009. http://coral.ie.lehigh.edu/~ted/files/papers/MenalGuzelsoyDissertation09.pdf
M. Güzelsoy, T.K. Ralphs, Duality for mixed-integer linear programs. Int. J. Oper. Res. 4, 118–137 (2007). http://coral.ie.lehigh.edu/~ted/files/papers/MILPD06.pdf
G.A. Hanasusanto, D. Kuhn, W. Wiesemann, A comment on “computational complexity of stochastic programming problems”. Math. Program. 159(1), 557–569 (2016)
P. Hansen, B. Jaumard, G. Savard, New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13(5), 1194–1217 (1992)
A. Hassanzadeh, T.K. Ralphs, A generalized Benders’ algorithm for two-stage stochastic program with mixed integer recourse. Technical Report COR@L Laboratory Report 14T-005, Lehigh University, 2014. http://coral.ie.lehigh.edu/~ted/files/papers/SMILPGenBenders14.pdf
A. Hassanzadeh, T.K. Ralphs, On the value function of a mixed integer linear optimization problem and an algorithm for its construction. Technical report, COR@L Laboratory Report 14T-004, Lehigh University, 2014. http://coral.ie.lehigh.edu/~ted/files/papers/MILPValueFunction14.pdf
H. Held, D.L. Woodruff, Heuristics for multi-stage interdiction of stochastic networks. J. Heuristics 11(5–6), 483–500 (2005)
M. Hemmati, J.C. Smith, A mixed integer bilevel programming approach for a competitive set covering problem. Technical report, Clemson University, 2016
B.F. Hobbs, S.K. Nelson, A nonlinear bilevel model for analysis of electric utility demand-side planning issues. Ann. Oper. Res. 34(1), 255–274 (1992)
E. Israeli, System interdiction and defense. PhD thesis, Naval Postgraduate School, 1999
E. Israeli, R.K. Wood, Shortest path network interdiction. Networks 40(2), 97–111 (2002)
U. Janjarassuk, J. Linderoth, Reformulation and sampling to solve a stochastic network interdiction problem. Networks 52, 120–132 (2008)
R.G. Jeroslow, The polynomial hierarchy and a simple model for competitive analysis. Math. Program. 32(2), 146–164 (1985)
P. Kall, J. Mayer, Stochastic Linear Programming: Models, Theory, and Computation (Springer, Berlin, 2010)
B. Kara, V. Verter, Designing a road network for hazardous materials transportation. Transp. Sci. 38(2), 188–196 (2004)
R.M. Karp, On the computational complexity of combinatorial problems. Networks 5, 45–68 (1975)
I. Katriel, C. Kenyon-Mathieu, E. Upfal, Commitment under uncertainty: two-stage stochastic matching problems, in International Colloquium on Automata, Languages, and Programming (Springer, Berlin, 2007), pp. 171–182
C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, M. Tambe, Computing optimal randomized resource allocations for massive security games, in Proceedings of AAMAS (2009), pp. 689–696
K.-M. Klein, About the complexity of two-stage stochastic IPs (2019)
N. Kong, A.J. Schaefer, B. Hunsaker, Two-stage integer programs with stochastic right-hand sides: a superadditive dual approach. Math. Program. 108(2), 275–296 (2006)
M. Köppe, M. Queyranne, C.T. Ryan, Parametric integer programming algorithm for bilevel mixed integer programs. J. Optim. Theory Appl. 146(1), 137–150 (2010)
A.A. Kulkarni, U.V. Shanbhag, A shared-constraint approach to multi-leader multi-follower games. Set-Valued Var. Anal. 22(4), 691–720 (2014)
M. Labbé, A. Violin, Bilevel programming and price setting problems. 4OR 11(1), 1–30 (2013)
M. Labbé, P. Marcotte, G. Savard, A bilevel model of taxation and its application to optimal highway pricing. Manag. Sci. 44, 1608–1622 (1998)
G. Laporte, F.V. Louveaux, The integer l-shaped method for stochastic integer programs with complete recourse. Oper. Res. Lett. 13(3), 133–142 (1993)
A. Laszka, J. Lou, Y. Vorobeychik, Multi-defender strategic filtering against spear-phishing attacks, in Proc. of 30th AAAI Conf. on Artificial Intelligence (AAAI 2016) (2016)
S. Leyffer, T. Munson, Solving multi-leader-common-follower games. Optim. Methods Softw. 25(4), 601–623 (2010)
A. Lodi, T.K. Ralphs, F. Rossi, S. Smriglio, Interdiction branching. Technical Report OR/09/10, DEIS-Università di Bologna, 2009
J. Lou, Y. Vorobeychik, Equilibrium analysis of multi-defender security games, in Proc. of 24th Int. Joint Conf. on Artificial Intelligence (IJCAI 2019) (2015)
J. Lou, A.M. Smith, Y. Vorobeychik, Multidefender security games. IEEE Intell. Syst. 32(1), 50–60 (2017)
F.V. Louveaux, M.H. van der Vlerk, Stochastic programming with simple integer recourse. Math. Program. 61(1), 301–325 (1993)
L. Lozano, J.C. Smith, A value-function-based exact approach for the bilevel mixed-integer programming problem. Oper. Res. 65(3), 768–786 (2017)
A. Mahajan, On selecting disjunctions in mixed integer linear programming. PhD, Lehigh University, 2009. http://coral.ie.lehigh.edu/~ted/files/papers/AshutoshMahajanDissertation09.pdf
A. Mahajan, T.K. Ralphs, On the complexity of selecting disjunctions in integer programming. SIAM J. Optim. 20(5), 2181–2198 (2010). http://coral.ie.lehigh.edu/~ted/files/papers/Branching08.pdf
A. Marchesi, S. Coniglio, N. Gatti, Leadership in singleton congestion games, in Proc. of 27th Int. Joint Conf. on Artificial Intelligence (IJCAI 2018) (AAAI Press, New York, 2018), pp. 447–453
A.W. McMasters, T.M. Mustin, Optimal interdiction of a supply network. Nav. Res. Logist. Q. 17, 261–268 (1970)
A. Migdalas, Bilevel programming in traffic planning: models, methods and challenge. J. Glob. Optim. 7, 381–405 (1995)
J.T. Moore, J.F. Bard, The mixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921 (1990)
J-S. Pang, M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2(1), 21–56 (2005)
P. Paruchuri, J.P. Pearce, J. Marecki, M. Tambe, F. Ordonez, S. Kraus, Playing games for security: an efficient exact algorithm for solving Bayesian Stackelberg games, in Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008) (2008), pp. 895–902
T.K. Ralphs, M. Güzelsoy, The SYMPHONY callable library for mixed integer programming, in Proceedings of the Ninth INFORMS Computing Society Conference (2005), pp. 61–76. http://coral.ie.lehigh.edu/~ted/files/papers/SYMPHONY04.pdf
T.K. Ralphs, M. Güzelsoy, Duality and warm starting in integer programming, in The Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference (2006). http://coral.ie.lehigh.edu/~ted/files/papers/DMII06.pdf
R.T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)
V. Rutenburg, Propositional truth maintenance systems: classification and complexity analysis. Ann. Math. Artif. Intell. 10(3), 207–231 (1994)
G.K. Saharidis, M.G. Ierapetritou, Resolution method for mixed integer bi-level linear problems based on decomposition technique. J. Glob. Optim. 44(1), 29–51 (2008)
P. San Segundo, S. Coniglio, F. Furini, I. Ljubić, A new branch-and-bound algorithm for the maximum edge-weighted clique problem. Eur. J. Oper. Res. 278(1), 76–90 (2019)
W.H. Sandholm, Evolutionary implementation and congestion pricing. Rev. Econ. Stud. 69(3), 667–689 (2002)
M.P. Scaparra, R.L. Church, A bilevel mixed-integer program for critical infrastructure protection planning. Comput. Oper. Res. 35(6), 1905–1923 (2008)
M. Schaefer, C. Umans, Completeness in the polynomial-time hierarchy: a compendium. SIGACT News 33(3), 32–49 (2002)
R. Schultz, L. Stougie, M.H. Van Der Vlerk, Solving stochastic programs with integer recourse by enumeration: a framework using Gröbner basis. Math. Program. 83(1), 229–252 (1998)
S. Sen, J.L. Higle, The C 3 theorem and a D 2 algorithm for large scale stochastic mixed-integer programming: set convexification. Math. Program. 104(1), 1–20 (2005)
A. Shapiro, Monte Carlo sampling methods, in Handbooks in Operations Research and Management Science, vol. 10 (Elsevier, Amsterdam, 2003), pp. 353–425
H.D. Sherali, B.M.P. Fraticelli, A modification of Benders’ decomposition algorithm for discrete subproblems: an approach for stochastic programs with integer recourse. J. Glob. Optim. 22(1), 319–342 (2002)
H.D. Sherali, X. Zhu, On solving discrete two-stage stochastic programs having mixed-integer first-and second-stage variables. Math. Program. 108(2), 597–616 (2006)
A. Smith, Y. Vorobeychik, J. Letchford, Multidefender security games on networks. ACM SIGMETRICS Perform. Eval. Rev. 41(4), 4–7 (2014)
L.J. Stockmeyer, The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1–22 (1976)
S. Tahernejad, Two-stage mixed integer stochastic bilevel linear optimization. PhD, Lehigh University, 2019
S. Tahernejad, T.K. Ralphs, S.T. DeNegre, A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation. Math. Program. Comput. (2020). http://coral.ie.lehigh.edu/~ted/files/papers/MIBLP16.pdf
M. Tambe, Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned (Cambridge University Press, Cambridge, 2011)
S. Uryasev, Conditional value-at-risk: optimization algorithms and applications, in Proc. of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (IEEE, Piscataway, 2000), pp. 49–57
R.M. Van Slyke, R. Wets, L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)
L.N. Vicente, P.H. Calamai, Bilevel and multilevel programming: a bibliography review. J. Glob. Optim. 5(3), 291–306 (1994)
L. Vicente, G. Savard, J. Júdice, Discrete linear bilevel programming problem. J. Optim. Theory Appl. 89(3), 597–614 (1996)
H. Von Stackelberg, Market Structure and Equilibrium (Springer Science & Business Media, Berlin, 2010)
B. von Stengel, S. Zamir, Leadership games with convex strategy sets. Games Econom. Behav. 69(2), 446–457 (2010)
S.W. Wallace, W.T. Ziemba, Applications of Stochastic Programming (SIAM, Philadelphia, 2005)
L. Wang, P. Xu, The watermelon algorithm for the bilevel integer linear programming problem. SIAM J. Optim. 27(3), 1403–1430 (2017)
U.P. Wen, Y.H. Yang, Algorithms for solving the mixed integer two-level linear programming problem. Comput. Oper. Res. 17(2), 133–142 (1990)
H.P. Williams, Duality in mathematics and linear and integer programming. J. Optim. Theory Appl. 90(2), 257–278 (1996)
R. Wollmer, Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)
L.A. Wolsey, Integer programming duality: price functions and sensitivity analysis. Math. Program. 20(1), 173–195 (1981)
R.K. Wood, Deterministic network interdiction. Math. Comput. Model. 17(2), 1–18 (1993)
P. Xu, L. Wang, An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions. Comput. Oper. Res. 41, 309–318 (2014)
B. Zeng, Y. An, Solving bilevel mixed integer program by reformulations and decomposition. Technical report, University of South Florida, 2014
Y. Zhang, L.V. Snyder, T.K. Ralphs, Z. Xue, The competitive facility location problem under disruption risks. Transport. Res. Part E Log. Transport. Rev. 93 (2016). http://coral.ie.lehigh.edu/~ted/files/papers/CFLPD16.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bolusani, S., Coniglio, S., Ralphs, T.K., Tahernejad, S. (2020). A Unified Framework for Multistage Mixed Integer Linear Optimization. In: Dempe, S., Zemkoho, A. (eds) Bilevel Optimization. Springer Optimization and Its Applications, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-030-52119-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-52119-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-52118-9
Online ISBN: 978-3-030-52119-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)