Skip to main content

Conflict Resolution

  • Chapter
  • First Online:
The Major Metaphors of Evolution

Abstract

There is an inevitable conflict between organisms and their surroundings: the nature of the organism is to overexploit by means of inheritance systems that overproduce highly similar offspring, creating a struggle for survival. Living systems cope with this conflict by exploring new options in fitness space, even when this leads to reduced fitness. But simply coping with conflict is not enough to produce evolutionary diversification. That requires conflict resolution resulting in permanent changes signified by the emergence of two or more novel inheritance systems from a single ancestral system. Evolution is thus less about the cost of conflict (organisms pay no more than they can afford) and more about whether or not conflict is resolved. When conflict resolution occurs, it is a two-step process involving compensatory changes—density-dependent responses that break inheritance systems apart—followed by selection for novel forms of cohesion—functional integration that brings inheritance systems together. Compensatory changes decrease correlations in the inheritance system leading it to become more generalized (diffused) in fitness space. Cohesion increases correlations in the inheritance system leading it to become more specialized (concentrated) in fitness space. When a recently generalized inheritance system becomes isolated in a new part of fitness space due to a compensatory change, selection favoring cohesion can produce newly emergent inheritance systems. Yet, because the nature of the organism always predominates, conflict resolution always leads to new conflict. This ensures that evolution continues. Natural selection is a pervasive emergent property providing positive feedback for metabolic and inheritance phenomena, facilitating exploration when it is favored and exploitation when it is favored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bitume EV, Bonte D, Ronce O, Bach F, Flaven E, Olivieri I, Nieberding CM (2013) Density and genetic relatedness increase dispersal distance in a subsocial organism. Ecol Lett 16:430–437

    CAS  PubMed  Google Scholar 

  • Boucot AJ (1975a) Standing diversity of fossil groups in successive intervals of geologic time viewed in the light of changing levels of provincialism. J Paleontol 49:1105–1111

    Google Scholar 

  • Boucot AJ (1975b) Evolution and extinction rate controls. Elsevier, New York

    Google Scholar 

  • Boucot AJ (1978) Community evolution and rates of cladogenesis. In: Hecht MK, Steere WC, Wallace B (eds) Evolutionary biology, vol 11. Plenum, New York, pp 545–655

    Google Scholar 

  • Boucot AJ (1981) Principles of benthic marine paleoecology. Academic Press, New York

    Google Scholar 

  • Boucot AJ (1982) Paleobiologic evidence of behavioral evolution and coevolution. Author, Corvallis, OR

    Google Scholar 

  • Boucot AJ (1983) Does evolution take place in an ecological vacuum? II. J Paleontol 57:1–30

    Google Scholar 

  • Boucot AJ (1990) Community evolution: its evolutionary and biostratigraphic significance. In: Miller W III (ed) Paleocommunity temporal dynamics: the long-term development of multi-species assemblies. The Paleontological Society Special Publications 5: 48–70

    Google Scholar 

  • Broda E (1983) Darwin and Boltzmann. In: Geissler E, Scheler W (eds) Darwin today: the 8th Kühlungsborn colloquium on philosophical and ethical problems of biosciences. Abhandlungen der Akademien der Wissenschaften der DDR. Akademie, Berlin, pp 61–70

    Google Scholar 

  • Brooks DR (1985) Historical ecology: a new approach to studying the evolution of ecological associations. Ann Mo Bot Gard 72:660–680

    Google Scholar 

  • Brooks DR (2001) Evolution in the information age: rediscovering the nature of the organism. SEED 1: 37 pp. http://www.library.utoronto.ca/see

  • Brooks DR, Agosta AJ (2012) Children of time: the extended synthesis and major metaphors of evolution. Fortschr Zool 29:497–514

    Google Scholar 

  • Brooks DR, Boeger WA (2019) Climate change and emerging infectious diseases: evolutionary complexity in action. Curr Opin Syst Biol 13:75–81

    Google Scholar 

  • Brooks DR, McLennan DA (1991) Phylogeny, ecology and behavior: a research program in comparative biology. University of Chicago Press, Chicago

    Google Scholar 

  • Brooks DR, McLennan DA (1997) Biological signals as material phenomena. Rev pensee d’aujord d’hui 25:118–127. [in Japanese]

    Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, Chicago

    Google Scholar 

  • Brooks DR, Wiley EO (1986) Evolution as entropy: toward a unified theory of biology, 1st edn. University of Chicago Press, Chicago

    Google Scholar 

  • Brooks DR, Wiley EO (1988) Evolution as entropy: toward a unified theory of biology, 2nd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Caianiello S (2015) Succession of functions, from Darwin to Dohrn. Hist Philos Life Sci 36:335–345

    PubMed  Google Scholar 

  • Carroll SP (2005) Endless forms most beautiful: the new science of evo devo and the making of the animal kingdom. W.W. Norton, New York

    Google Scholar 

  • Collier J (1986) Entropy in evolution. Biol Philos 1:5–24

    Google Scholar 

  • Collier J (1998) Information increase in biological systems: how does adaptation fit? In: van de Vijver G, Salthe SN, Delpos M (eds) Evolutionary systems: biological and epistemological perspectives on selection and self-organization. Kluwer Academic, Dordrecht, pp 129–140

    Google Scholar 

  • Collier J (2000) The dynamical basis of information and the origins of semiosis. In: Taborsky E (ed) Semiotics, evolution, energy. Shaker Verlag, Aachen, pp 111–138

    Google Scholar 

  • Collier J, Hooker C (1999) Complexly organised dynamical systems. Open Syst Inf Dyn 6:241–302

    Google Scholar 

  • Corning PA (2003) Nature’s magic: synergy in evolution and the fate of humankind. Cambridge University Press, New York

    Google Scholar 

  • Corning PA (2005) Holistic Darwinism: synergy, cybernetics and the bioeconomics of evolution. University of Chicago Press, Chicago

    Google Scholar 

  • Corning PA, Szathmary E (2015) “Synergistic selection”: a Darwinian frame for the evolution of complexity. J Theor Biol 371:45–58

    PubMed  Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, London

    Google Scholar 

  • Darwin C (1872) The origin of species, 6th edn. John Murray, London

    Google Scholar 

  • Eldredge N (1985) Unfinished synthesis. Columbia University Press, New York

    Google Scholar 

  • Eldredge N (1986) Information, economics and evolution. Ann Rev Ecol Syst 17:351–369

    Google Scholar 

  • Eldredge N, Salthe SN (1984) Hierarchy and evolution. In: Dawkins R, Ridley M (eds) Oxford surveys in evolutionary biology, vol 1. Oxford University Press, Oxford, pp 182–206

    Google Scholar 

  • Ellers J, Kiers ET, Currie CR, Bradon R, McDonald BR, Visser B (2012) Ecological interactions drive evolutionary loss of traits. Ecol Lett 15:1071. https://doi.org/10.1111/j.1461-0248.2012.01830.x

    Article  PubMed  Google Scholar 

  • Fannjiang A, Nonnenmacher S, Wołowski L (2004) Dissipation time and decay of correlations. Nonlinearity 17:1481–1508

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Fisher RA (1958) The Genetical theory of natural selection, 2nd edn. Dover, New York

    Google Scholar 

  • Gartler SM (2014) A brief history of dosage compensation. J Genet 93:591–595

    PubMed  Google Scholar 

  • Gatlin LL (1972) Information theory and the living system. Columbia University Press, New York

    Google Scholar 

  • Haasl RJ, Payseur BA (2015) Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Mol Ecol 25:5. https://doi.org/10.1111/mec.13339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiermes M, Bakker TCM, Mehlis M, Rick IP (2015) Context-dependent dynamic UV signaling in female three spine sticklebacks. Sci Rep 5:17474. https://doi.org/10.1038/srep17474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge J (2011) Darwinism after Mendelism: the case of Sewall Wright’s intellectual synthesis in his shifting balance theory of evolution (1931). Stud Hist Phil Biol Biomed Sci 42:30–39

    Google Scholar 

  • Holland BS, Chiaverano LM, Howard CK (2017) Diminished fitness in an endemic Hawaiian snail in nonnative host plants. Ethol Ecol Evol 29:229–240

    Google Scholar 

  • Hull DL (1988) Science as a process. University of Chicago Press, Chicago

    Google Scholar 

  • Hutton P, Seymoure BM, McGraw KJ, Ligon RA, Simpson RK (2015) Dynamic color communication. Curr Opin Behav Sci 6:41–49

    Google Scholar 

  • Ishida Y (2017) Sewall Wright, shifting balance theory, and the hardening of the modern synthesis. Stud Hist Phil Biol Biomed Sci 61:1–10

    Google Scholar 

  • Jangjoo M, Matter SF, Roland J, Keyghobadia N (2016) Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc Natl Acad Sci U S A 113:10914–10919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juarrero A (1999) Dynamics in action. MIT Press, Boston, MA

    Google Scholar 

  • Juarrero A (2000) Dynamics in action: intentional behavior as a complex system. Emergence 2:24–57

    Google Scholar 

  • Kaiser K, Boehlke C, Navarro-Pérez E, Vega A, Dudgeon S, Robertson JM (2018) Local preference encoded by complex signaling: mechanisms of mate preference in the red-eyed treefrog (Agalychnis callidryas). Behav Ecol Sociobiol 72:182. https://doi.org/10.1007/s00265-018-2597-0

    Article  Google Scholar 

  • Kelemen A, Tölgyesi C, Valkó O, Deák B, Miglécz T, Fekete R, Török P, Balogh N, Tóthmérész B (2019) Density-dependent plant–plant interactions triggered by grazing. Front Plant Sci 10:876. https://doi.org/10.3389/fpls.2019.00876

    Article  PubMed  PubMed Central  Google Scholar 

  • Landsberg PT (1984) Can entropy and “order” increase together? Phys Lett 102A:171–173

    Google Scholar 

  • Maynard Smith J (1976) What determines the rate of evolution? Am Nat 110:331–338

    Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J (2000) The concept of information in biology. Philos Sci 67:177–194

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1999) The origins of life. Oxford University Press, Oxford

    Google Scholar 

  • McLennan DA (1996) Integrating phylogenetic and experimental analyses: the evolution of male and female nuptial coloration in the Gasterosteidae. Syst Biol 45:261–277

    Google Scholar 

  • McLennan DA (2000) The macroevolutionary diversification of female and male components of the stickleback breeding system. Behaviour 137:1029–1045

    Google Scholar 

  • Mueller LD, Guo P, Ayala FJ (1991) Density-dependent natural selection and trade-offs in life history traits. Science 253:433–435

    CAS  PubMed  Google Scholar 

  • Muller HJ (1914) A gene for the fourth chromosome of Drosophila. J Exp Zool 17:325–336

    Google Scholar 

  • Olenina I, Vaičiukynas E, Šulčius S, Paškauskas R, Verikas A, Gelžinis A, Bačauskienė M, Bertašiūtė V, Olenin S (2015) The dinoflagellate Prorocentrum cordatum at the edge of the salinity tolerance: the growth is slower but cells are larger. Estuar Coast Shelf Sci 168:71. https://doi.org/10.1016/j.ecss.2015.11.013

    Article  CAS  Google Scholar 

  • Pertoldi C, Bundgaard J, Loeschcke V, Barker JSF (2014) The phenotypic variance gradient—a novel concept. Ecol Evol 4(22):4230–4236. https://doi.org/10.1002/ece3.1298

    Article  PubMed  PubMed Central  Google Scholar 

  • Pie MR, Engers KB, Boeger WA (2006) Density-dependent topographical specialization in Gyrodactylus anisopharynx (Monogenoidea, Gyrodactylidae): boosting transmission or evading competition? J Parasitol 92:459–463

    Google Scholar 

  • Popat R, Pollitt EJG, Harrison F, Naghra H, Hong K-W, Chan K-G, Griffin AS, Williams P, Brown SP, West SA, Diggle SP (2015) Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution 69:2371–2383

    PubMed  PubMed Central  Google Scholar 

  • Ross HH (1972a) The origin of species diversity in ecological communities. Taxon 21:253–259

    Google Scholar 

  • Ross HH (1972b) An uncertainty principle in ecological evolution. In: Allen RT, James FC (eds) A symposium on ecosystematics. Occasional paper 4. University of Arkansas, Little Rock, pp 133–157

    Google Scholar 

  • Salthe SN (1993) Development and evolution: complexity and change in biology. MIT Press, Boston, MA

    Google Scholar 

  • Santos M, Borash DJ, Joshi A, Bounlutay N, Mueller LD (1997) Density-dependent natural selection in Drosophila: evolution of growth rate and body size. Evolution 51:420–432

    PubMed  Google Scholar 

  • Schindler DE, Armstrong JB, Reed TE (2015) The portfolio concept in ecology and evolution. Front Ecol Environ 13:257–263

    Google Scholar 

  • Sturtevant AH (1919) Contributions to the genetics of Drosophila melanogaster. III. Inherited linkage variations in the second chromosome. Carnegie Inst Wash Publ 278:305–341

    Google Scholar 

  • Szathmáry E (2015) Toward major transition theory 2.0. Proc Natl Acad Sci U S A 112:10104–10111

    PubMed  PubMed Central  Google Scholar 

  • Tuomi J, Vuorisalo T, Laihonen P (1988) Components of selection: an expanded theory of natural selection. In: de Jong G (ed) Population genetics and evolution. Springer, Berlin, pp 109–118

    Google Scholar 

  • Wanntorp H-E (1983) Historical constraints in adaptation theory: traits and non-traits. Oikos 41:157–160

    Google Scholar 

  • Wilson DS, Van Vugt M, O’Gorman R (2008) Multi-level selection theory and major evolutionary transitions. Curr Dir Psychol Sci 17:6–9

    Google Scholar 

  • Witzany G (2018) 2.4 Communication as the main characteristic of life. In: Handbook of astrobiology. CRC Press, Boca Raton, FL, p 91

    Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the 6th International Congress of Genetics, pp 356–366

    Google Scholar 

  • Wright S (1956) Modes of selection. Am Nat 90:5–24

    Google Scholar 

  • Wright S (1978) Modes of speciation. Paleobiology 4:373–379

    Google Scholar 

  • Wright S (1982) The shifting balance theory and macroevolution. Annu Rev Genet 16:1–19

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore J. Agosta .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agosta, S.J., Brooks, D.R. (2020). Conflict Resolution. In: The Major Metaphors of Evolution. Evolutionary Biology – New Perspectives on Its Development, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-52086-1_8

Download citation

Publish with us

Policies and ethics