Skip to main content

Controlled Self-organization for Steering Local Multi-objective Optimization in Virtual Power Plants

  • Conference paper
  • First Online:
Highlights in Practical Applications of Agents, Multi-Agent Systems, and Trust-worthiness. The PAAMS Collection (PAAMS 2020)

Abstract

The future smart grid has to be operated by rather small and hardly flexible energy resources. Such duty comprises different planning tasks. Virtual power plants powered by multi-agent control are seen as a promising aggregation scheme for coping with problem size and for gaining flexibility for distributed load planning. If agents are allowed to freely include local preferences into decision making the overall solution quality deteriorates significantly if no control mechanism is installed. We scrutinized this deterioration and propose an approach based on controlled self-organization to achieve an overall maximization of integrated local preferences while at the same time preserving global solution quality for grid control as much as possible. Some first results prove the applicability of the general approach. Further research directions and questions for future work are derived from these first results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awad, A., German, R.: Self-organizing smart grid services. In: 2012 Sixth International Conference on Next Generation Mobile Applications, Services and Technologies, pp. 205–210. IEEE (2012)

    Google Scholar 

  2. Awerbuch, S., Preston, A.M. (eds.): The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry, Topics in Regulatory Economics and Policy, vol. 26. Kluwer Academic Publishers, Berlin (1997)

    Google Scholar 

  3. Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: design, analysis and applications. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1653–1664 (2005)

    Google Scholar 

  4. Bremer, J., Rapp, B., Jellinghaus, F., Sonnenschein, M.: Tools for teaching demand-side management. In: Wohlgemuth, V., Page, B., Voigt, K. (eds.) Environmental Informatics and Industrial Environmental Protection - 23rd International Conference on Informatics for Environmental Protection, EnviroInfo2009, pp. 455–463 (2009)

    Google Scholar 

  5. Bremer, J.: Constraint-Handling mit Supportvektor-Dekodern in der verteilten Optimierung. Ph.D. thesis (2015). http://oops.uni-oldenburg.de/2336/

  6. Bremer, J., Lehnhoff, S.: A decentralized PSO with decoder for scheduling distributed electricity generation. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 427–442. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_28

    Chapter  Google Scholar 

  7. Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: IEEE Symposium Series on Computational Intelligence 2011 (SSCI 2011), Paris, France, April 2011

    Google Scholar 

  8. Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A.L.N. (eds.) Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART 2013), 15–18 February 2013, Barcelona, Spain, vol. 2, pp. 91–100. SciTePress (2013)

    Google Scholar 

  9. Coll-Mayor, D., Picos, R., Garciá-Moreno, E.: State of the art of the virtual utility: the smart distributed generation network. Int. J. Energy Res. 28(1), 65–80 (2004)

    Article  Google Scholar 

  10. Wedde, H.F., Lehnhoff, S., Rehtanz, C., Krause, O.: Intelligent agents under collaborative control in emerging power systems. Int. J. Eng. Sci. Technol. 2, 45–59 (2010)

    Article  Google Scholar 

  11. Futia, C.A.: Excess supply equilibria. J. Econ. Theory 14(1), 200–220 (1977)

    Article  MathSciNet  Google Scholar 

  12. Hansen, N.: The CMA evolution strategy: a tutorial. Technical report (2011). www.lri.fr/~hansen/cmatutorial.pdf

  13. Hinrichs, C., Bremer, J., Sonnenschein, M.: Distributed hybrid constraint handling in large scale virtual power plants. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europe 2013). IEEE Power & Energy Society (2013)

    Google Scholar 

  14. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-choice combinatorial optimization problems. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012. ORP, pp. 297–302. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00795-3_43

    Chapter  Google Scholar 

  15. Hinrichs, C., Sonnenschein, M.: A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents. Int. J. Bio-Inspired Comput. 10, 69 (2017)

    Article  Google Scholar 

  16. Kamphuis, R., Warmer, C., Hommelberg, M., Kok, K.: Massive coordination of dispersed generation using powermatcher based software agents. In: 19th International Conference on Electricity Distribution, May 2007

    Google Scholar 

  17. Kramer, O., Gieseke, F.: Short-term wind energy forecasting using support vector regression. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds.) SOCO 2011. AINSC, pp. 271–280. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19644-7_29

    Chapter  Google Scholar 

  18. Lehn, J.M.: Towards complex matter: supramolecular chemistry and self-organization. Eur. Rev. 17(2), 263–280 (2009)

    Article  Google Scholar 

  19. Liu, L., Thanheiser, S., Schmeck, H.: A reference architecture for self-organizing service-oriented computing. In: Brinkschulte, U., Ungerer, T., Hochberger, C., Spallek, R.G. (eds.) ARCS 2008. LNCS, vol. 4934, pp. 205–219. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78153-0_16

    Chapter  Google Scholar 

  20. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. CoRR abs/1007.4063 (2010)

    Google Scholar 

  21. Meunier, F.: Co-and tri-generation contribution to climate change control. Appl. Thermal Eng. 22(6), 703–718 (2002)

    Article  Google Scholar 

  22. Mittal, S., Rainey, L.: Harnessing emergence: the control and design of emergent behavior in system of systems engineering. In: Proceedings of the Conference on Summer Computer Simulation, pp. 1–10. Society for Computer Simulation International (2015)

    Google Scholar 

  23. Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing–A Paradigm Shift for Complex Systems. Springer Science & Business Media, Heidelberg (2011)

    Book  Google Scholar 

  24. Ngatchou, P., Zarei, A., El-Sharkawi, A.: Pareto multi objective optimization. In: Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, pp. 84–91. IEEE (2005)

    Google Scholar 

  25. Nieße, A.: Verteilte kontinuierliche Einsatzplanung in Dynamischen Virtuellen Kraftwerken. Dissertation, Carl v. Ossietzky Universität, Oldenburg (2015)

    Google Scholar 

  26. Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggregation and scheduling methods for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 1505–1514. IEEE (2014)

    Google Scholar 

  27. Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggrgation and scheduling for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Federated Conference on Computer Science and Information Systems - FedCSIS September 2014, Warsaw, Poland (2014)

    Google Scholar 

  28. Nieße, A., Bremer, J., Sonnenschein, M.: Continuous scheduling. In: Smart Nord - Final Report, pp. 69–76. Hartmann GmbH, Hannover (2015)

    Google Scholar 

  29. Nieße, A., Tröschel, M.: Controlled self-organization in smart grids. In: Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE), pp. 1–6. IEEE (2016)

    Google Scholar 

  30. Nikonowicz, Ł.B., Milewski, J.: Virtual power plants - general review: structure, application and optimization. J. Power Technol. 92(3) (2012). http://papers.itc.pw.edu.pl/index.php/JPT/article/view/284/492

  31. Percec, V., et al.: Transformation from kinetically into thermodynamically controlled self-organization of complex helical columns with 3D periodicity assembled from dendronized perylene bisimides. J. Am. Chem. Soc. 135(10), 4129–4148 (2013)

    Article  Google Scholar 

  32. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based homeostatic control for green energy in the smart grid. ACM Trans. Intell. Syst. Technol. 2(4), 35:1–35:28 (2011)

    Article  Google Scholar 

  33. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic observer/controller architecture for organic computing. In: Jahrestagung, G.I. (1) LNI, vol. 93, pp. 112–119. GI (2006)

    Google Scholar 

  34. Steghöfer, J.-P., et al.: Trustworthy organic computing systems: challenges and perspectives. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang, D., Zhou, X. (eds.) ATC 2010. LNCS, vol. 6407, pp. 62–76. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16576-4_5

  35. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  36. Wu, F., Moslehi, K., Bose, A.: Power system control centers: past, present, and future. Proc. IEEE 93(11), 1890–1908 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Bremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bremer, J., Lehnhoff, S. (2020). Controlled Self-organization for Steering Local Multi-objective Optimization in Virtual Power Plants. In: De La Prieta, F., et al. Highlights in Practical Applications of Agents, Multi-Agent Systems, and Trust-worthiness. The PAAMS Collection. PAAMS 2020. Communications in Computer and Information Science, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-51999-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51999-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51998-8

  • Online ISBN: 978-3-030-51999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics