An Ontology Model for Interoperability and Multi-organization Data Exchange

  • Andrei Tara
  • Alex ButeanEmail author
  • Constantin Zamfirescu
  • Robert Learney
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1225)


Progress in the uptake and use of technologies such as Artificial Intelligence and the Internet of Things seems to be stalled by the colossal fragmentation of information and data standards. This complexity is compounded by issues of inter-organisational differences, hindering effective collaboration. There is a growing demand for cross-organizational integrations in regulated but decentralized environments. This paper introduces an ontology architecture where information is sliced into independent semantic layers, each focusing on a specific aspect of the data. By dissolving traditional monolithic data structures into layered, light semantic components, the necessity to maintain contextual metadata is diminished. The model proposes an ontology structure based on decentralized technologies to ensure an open environment and to avoid the flaws of centralized systems.


Decentralized Ontology Model 



This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 870148 - “DIY4U”.


  1. 1.
    Acharjya, D.P., Kauser, A.P.: A survey on big data analytics: challenges, open research issues and tools. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 7(2), 511–518 (2016)Google Scholar
  2. 2.
    Akerkar, R. (ed.): Scalable End-User Access to Big Data. Chapman and Hall/CRC Press, Boca Raton (2019). ISBN 9780367379117Google Scholar
  3. 3.
    Bagui, S., Nguyen, L.T.: Database sharding: to provide fault tolerance and scalability of big data on the cloud. Int. J. Cloud Appl. Comput. (IJCAC) 5, 36–52 (2015)Google Scholar
  4. 4.
    Benet, J.: IPFS - Content Addressed, Versioned, P2P File System.
  5. 5.
    Baqa, H., Bauer, M., Bilbao, S., Corchero, A., et al.: Towards semantic interoperability standards based on ontologies. Semantic Interoperability White Paper, 26 p (2019)Google Scholar
  6. 6.
    Cai, M., Frank, M.R., Yan, B., MacGregor, R.M.: A subscribable peer-to-peer RDF repository for distributed metadata management. J. Web Semant. 2(2), 109–130 (2004)CrossRefGoogle Scholar
  7. 7.
    Casino, F., Dasaklis, T.K., Patsakis, C.: A systematic literature review of blockchain-based applications: current status, classification and open issues. Telematics Inf. 36, 55–81 (2019). ISSN 0736-5853CrossRefGoogle Scholar
  8. 8.
    Diyotta: Modern Data Integration Whitepaper (2016). Accessed 01 Jan 2020
  9. 9.
    Dumais, S., Chen, H.: Hierarchical classification of web content. In: The 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 256–263 (2000)Google Scholar
  10. 10.
    Elghamrawy, S., El-Desouky, A.: Distributed multi-agent communication system based on dynamic ontology mapping. Int. J. Commun. Netw. Distrib. Syst. 10(1), 1–24 (2013)Google Scholar
  11. 11.
    Fang, Q., Zhao, Y., Yang, G., Zheng, W.: Scalable distributed ontology reasoning using DHT-based partitioning. In: The Semantic Web (ASWC 2008). Lecture Notes in Computer Science, vol. 5367, pp. 91–105. Springer, Bangkok (2008)Google Scholar
  12. 12.
    Fudholi, D.H., Rahayu, W., Pardede, E., Hendrik: A data-driven approach toward building dynamic ontology. In: Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl, E., You, I. (eds.) Information and Communication Technology. ICT-EurAsia 2013. Lecture Notes in Computer Science, vol. 7804. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    General Data Protection Regulation (GDPR). Accessed 01 Jan 2020
  14. 14.
    Haase, P., Horrocks, I., Hovland, D., Hubauer, T., et al.: Optique system: towards ontology and mapping management in OBDA solutions. In: Third International Workshop on Debugging Ontologies and Ontology Mappings, CEUR, Anissaras/Hersonissou - Greece, pp. 21–32 (2013)Google Scholar
  15. 15.
    Heine, F.: Scalable P2P based RDF querying. In: International Conference on Scalable Information Systems, Infoscale (2006)Google Scholar
  16. 16.
    Hepp, M., Leukel, J., Schmitz, V.: A quantitative analysis of eCl@ss, UNSPSC, eOTD, and RNTD content, coverage, and maintenance. In: International Conference on e-Business Engineering (ICEBE 2005), Beijing - China, pp. 572–581. IEEE (2005)Google Scholar
  17. 17.
    ISO 13584-32:2010 Industrial automation systems and integration - Parts library - Part 32: Implementation resources: OntoML: Product ontology markup language. Accessed 01 Jan 2020
  18. 18.
    Jensen, J.: A systematic literature review of the use of semantic web technologies in formal education. Br. J. Edu. Technol. 50, 505–517 (2019)CrossRefGoogle Scholar
  19. 19.
    Kaneiwa, K., Mizoguchi, R.: Distributed reasoning with ontologies and rules in order-sorted logic programming. Web Semant. Sci. Serv. Agents World Wide Web 7(3), 252–270 (2009)CrossRefGoogle Scholar
  20. 20.
    Kaoudi, Z., Koubarakis, M., Kyzirakos, K., Magiridou, M., Miliaraki, I., Papadakis-Pesaresi, A.: Publishing, discovering and updating semantic grid resources using DHTs. In: CoreGRID Workshop on Grid Programming Model, Grid and P2P Systems Architecture (2006)Google Scholar
  21. 21.
    Kaoudi, Z., Kyzirakos, K., Koubarakis, M.: SPARQL query optimization on top of DHTs. In: Patel-Schneider, P.F. et al. (eds.) The Semantic Web – ISWC 2010. ISWC 2010. Lecture Notes in Computer Science, vol. 6496. Springer, Heidelberg (2010)Google Scholar
  22. 22.
    Khouri, S., Boukhari, I., Bellatreche, L., Sardet, E., Jean, S., Baron, M.: Ontology-based structured web data warehouses for sustainable interoperability: requirement modeling, design methodology and tool. Comput. Ind. 63(8), 799–812 (2012)CrossRefGoogle Scholar
  23. 23.
    Pandit, H.J., O’Sullivan, D., Lewis, D.: An ontology design pattern for describing personal data in privacy policies. In: The 9th Workshop on Ontology Design and Patterns, vol. 2195, pp. 29–39. CEUR, Monterey (2018)Google Scholar
  24. 24.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and Abstract Syntax. W3C Recommendation. Accessed 01 Jan 2020
  25. 25.
    Rosen, A.: Towards a Framework for DHT Distributed Computing, Georgia State University, Department of Computer Science. Accessed 01 Jan 2020
  26. 26.
    Santipantakis, G., Kotis, K., Vouros, G.A.: OBDAIR: ontology-based distributed framework for accessing, integrating and reasoning with data in disparate data sources. Expert Syst. Appl. 90, 464–483 (2017). ISSN 0957-4174CrossRefGoogle Scholar
  27. 27.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, F.M., Dabek, F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw. (TON) 11(1), 17–32 (2003)CrossRefGoogle Scholar
  28. 28.
    The Rule Markup Initiative. Accessed 01 Jan 2020
  29. 29.
    Wang, G., Jerry, Z., Shi, Nixon, M., Han, S.: SoK: sharding on blockchain. In: ACM Conference on Advances in Financial Technologies (AFT 2019), pp. 41–61. ACM, New York (2019)Google Scholar
  30. 30.
    World Wide Web Consortium - W3C: Resource Description Framework (RDF). Accessed 01 Jan 2020

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrei Tara
    • 1
  • Alex Butean
    • 1
    • 2
    Email author
  • Constantin Zamfirescu
    • 2
  • Robert Learney
    • 3
  1. 1.Effective DecisionsSibiuRomania
  2. 2.Lucian Blaga University of SibiuSibiuRomania
  3. 3.Digital CatapultLondonUK

Personalised recommendations