Skip to main content

Tau Functions Associated with Linear Systems

  • Conference paper
  • First Online:
Operator Theory, Functional Analysis and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 282))

Abstract

Let (−A, B, C) be a linear system in continuous time t > 0 with input and output space \(\mathbb {C}\) and state space H. The function ϕ (x)(t) = Ce −(t+2x)A B determines a Hankel integral operator \(\Gamma _{\phi _{(x)}}\) on \(L^2((0, \infty ); \mathbb {C})\); if \(\Gamma _{\phi _{(x)}}\) is trace class, then the Fredholm determinant \(\tau (x)=\det (I+ \Gamma _{\phi _{(x)}})\) defines the tau function of (−A, B, C). Such tau functions arise in Tracy and Widom’s theory of matrix models, where they describe the fundamental probability distributions of random matrix theory. Dyson considered such tau functions in the inverse spectral problem for Schrödinger’s equation − f″ + uf = λf, and derived the formula for the potential \(u(x)=-2{{d^2}\over {dx^2}}\log \tau (x)\) in the self-adjoint scattering case (Commun Math Phys 47:171–183, 1976). This paper introduces a operator function R x that satisfies Lyapunov’s equation \({{dR_x}\over {dx}}=-AR_x-R_xA\) and \(\tau (x)=\det (I+R_x)\), without assumptions of self-adjointness. When − A is sectorial, and B, C are Hilbert–Schmidt, there exists a non-commutative differential ring \({\mathcal A}\) of operators in H and a differential ring homomorphism \(\lfloor \,\,\rfloor :{\mathcal A}\to \mathbb {C}[u,u', \dots ]\) such that u = −4⌊A⌋, which extends the multiplication rules for Hankel operators considered by Pöppe and McKean (Cent Eur J Math 9:205–243, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Aktosun, F. Demontis, C. van der Mee, Exact solutions to the focusing nonlinear Schrödinger equation. Inverse Prob. 23, 2171–2195 (2007)

    Article  Google Scholar 

  2. M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra (Addison Wesley, Reading, 1969)

    MATH  Google Scholar 

  3. H.F. Baker, Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  4. R. Bhatia, P. Rosenthal, How and why to solve the operator equation AX − XB = Y . Bull. Lond. Math. Soc. 29, 1–21 (1997)

    Google Scholar 

  5. G. Blower, Linear systems and determinantal random point fields. J. Math. Anal. Appl. 335, 311–334 (2009)

    Article  MathSciNet  Google Scholar 

  6. G. Blower, On tau functions for orthogonal polynomials and matrix models. J. Phys. A 44, 285202 (2011)

    Article  MathSciNet  Google Scholar 

  7. Y.V. Brezhnev, What does integrability of finite-gap or soliton potentials mean? Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366, 923–945 (2008)

    MathSciNet  MATH  Google Scholar 

  8. F.J. Dyson, Fredholm determinants and inverse scattering problems. Commun. Math. Phys. 47, 171–183 (1976)

    Article  MathSciNet  Google Scholar 

  9. K.-J. Engel, R. Nagel, One Parameter Semigroups for Linear Evolution Equations (Springer, New York, 2000)

    MATH  Google Scholar 

  10. N. Ercolani, H.P. McKean, Geometry of KdV. IV: Abel sums, Jacobi variety and theta function in the scattering case. Invent. Math. 99, 483–544 (1990)

    Google Scholar 

  11. I.M. Gelfand, L.A. Dikii, Integrable nonlinear equations and the Liouville theorem. Funct. Anal. Appl. 13, 6–15 (1979)

    Article  MathSciNet  Google Scholar 

  12. I.M. Gelfand, B.M. Levitan, On the determination of a differential equation from its spectral function. Izvestiya Akad. Nauk SSSR Ser. Mat. 15, 309–360 (1951)

    MathSciNet  Google Scholar 

  13. F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions Volume I: (1 + 1)-Dimensional Continuous Models (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  14. F. Gesztesy, B. Simon, The Xi function. Acta Math. 176, 49–71 (1996)

    Article  MathSciNet  Google Scholar 

  15. J.A. Goldstein, Semigroups of Linear Operators and Applications (Oxford University Press, Oxford, 1985)

    MATH  Google Scholar 

  16. S. Grudsky, A. Rybkin, On classical solutions of the KdV equation. Proc. Lond. Math. Soc. 121, 354–371 (2020)

    Article  MathSciNet  Google Scholar 

  17. S. Grudsky, A. Rybkin, Soliton theory and Hankel operators. SIAM J. Math. Anal. 47, 2283–2323 (2015)

    Article  MathSciNet  Google Scholar 

  18. E. Hille, Lectures on Ordinary Differential Equations (Addison-Wesley, Reading, 1968)

    MATH  Google Scholar 

  19. V.G. Kac, Infinite Dimensional Lie Algebras (Cambridge University Press, Cambridge, 1985)

    MATH  Google Scholar 

  20. V. Katsnelson, D. Volok, Rational solutions of the Schlesinger system and isoprincipal deformations of rational matrix functions. I. Oper. Theory Adv. Appl. 149, 291–348 (2004)

    MathSciNet  MATH  Google Scholar 

  21. S. Kotani, Construction of KdV flow I. τ-function via Weyl function. Zh. Mat. Fiz. Anal. Geom. 14, 297–335 (2018)

    Google Scholar 

  22. I.M. Krichever, The integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11, 12–26 (1977)

    Article  MathSciNet  Google Scholar 

  23. V.B. Matveev, Darboux transformation and explicit solutions of the Kadomtcev–Petviaschvily equation, depending upon functional parameters. Lett. Math. Phys. 3, 213–216 (1979)

    Article  MathSciNet  Google Scholar 

  24. H.P. McKean, Fredholm determinants. Cent. Eur. J. Math. 9, 205–243 (2011)

    Article  MathSciNet  Google Scholar 

  25. A.V. Megretskii, V.V. Peller, S.R. Treil, The inverse spectral problem for self-adjoint Hankel operators. Acta Math. 174, 241–309 (1995)

    Article  MathSciNet  Google Scholar 

  26. T. Miwa, M. Jimbo, E. Date, Solitons: Differential Equations, Symmetries, and Infinite Dimensional Algebras (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  27. M. Mulase, Cohomological structure in soliton equations and Jacobian varieties. J. Differ. Geom. 19, 403–430 (1984)

    Article  MathSciNet  Google Scholar 

  28. N.K. Nikolski, Operators, Functions and Systems: An Easy Reading, vol. 1 (American Mathematical Society, Providence, 2002)

    MATH  Google Scholar 

  29. S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.F. Zakharov, Theory of Solitons, the Inverse Scattering Method (Consultants Bureau, New York and London, 1984)

    MATH  Google Scholar 

  30. V.V. Peller, Hankel Operators and Their Applications (Springer, New York, 2003)

    Book  Google Scholar 

  31. C. Pöppe, The Fredholm determinant method for the KdV equations. Phys. D 13, 137–160 (1984)

    Article  MathSciNet  Google Scholar 

  32. C. Pöppe, D.H. Sattinger, Fredholm determinants and the τ function for the Kadomtsev–Petviashvili hierarchy. Publ. Res. Inst. Math. Sci. 24, 505–538 (1988)

    Article  MathSciNet  Google Scholar 

  33. M. van der Put, M.F. Singer, Galois Theory of Linear Differential Equations (Springer, Berlin, 2003)

    MATH  Google Scholar 

  34. A. Rybkin, The Hirota τ-function and well-posedness of the KdV equation with an arbitrary step-like initial profile decaying on the right half line. Nonlinearity 24, 2953–2990 (2011)

    Article  MathSciNet  Google Scholar 

  35. G. Segal, G. Wilson, Loop groups and equations of KdV type. Inst. Hautes Études Sci. Publ. Math. 61, 5–65 (1985)

    Article  MathSciNet  Google Scholar 

  36. I.N. Sneddon, The Use of Integral Transforms (McGraw-Hill, New York, 1972)

    MATH  Google Scholar 

  37. C.A. Tracy, H. Widom, Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163, 33–72 (1994)

    Article  MathSciNet  Google Scholar 

  38. M. Trubowitz, The inverse problem for periodic potentials. Commun. Pure Appl. Math. 30, 321–337 (1977)

    Article  MathSciNet  Google Scholar 

  39. T. Zhang, S. Venakides, Periodic limit of inverse scattering. Commun. Pure Appl. Math. 46, 819–865 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

GB thanks Henry McKean for helpful conversations. SLN thanks EPSRC for financially supporting this research. The authors thank the referee for drawing attention to recent literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Blower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blower, G., Newsham, S.L. (2021). Tau Functions Associated with Linear Systems. In: Bastos, M.A., Castro, L., Karlovich, A.Y. (eds) Operator Theory, Functional Analysis and Applications. Operator Theory: Advances and Applications, vol 282. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-51945-2_5

Download citation

Publish with us

Policies and ethics