Skip to main content

Heterostructure Photonic Devices

  • Chapter
  • First Online:
III–V Compound Semiconductors and Devices

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

The light emitters made of III–V alloys are the most important and widely used photonic devices because Si and Ge do not emit light due to their indirect band structures. The semiconductor laser is similar to the solid-state ruby laser and Ar+ gas laser in that the emitted radiation is highly monochromatic and produces a highly directional beam of light. However, the semiconductor laser is much smaller (on the order of 0.25 mm long) than other lasers and is easily modulated at high frequencies simply by modulating the injected current. Because of these unique properties, the semiconductor laser is one of the most important light sources for optical-fiber communication. It also has many applications in consumer electronics such as optical reading, laser printing, and face ID, to mention just a few. In addition, semiconductor lasers have significant applications in many areas of basic research and technology, such as high-resolution gas spectroscopy and atmospheric pollution monitoring. A related important photonic device is the light-emitting diode (LED), which has a device structure very similar to the semiconductor injection laser but without a resonant optical cavity. Today, visible LEDs play a leading role in displays and solid-state lighting applications. In this chapter, the device physics, structures, and characteristics of many types of heterostructure lasers are discussed. The current status and challenges of visible LEDs are briefly reviewed. In addition, the quantum cascade laser based on unipolar inter-subband transitions for long-wavelength applications is introduced. Also discussed is the mid-infrared quantum-well infrared photodetector, operating based on the same unipolar inter-subband optical transition. Finally, the concept of optoelectronic integration is demonstrated in the transistor laser where both transistor and laser operation are realized simultaneously in the same device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.N. Dutta, J. Appl. Phys. 51, 6095 (1980)

    Article  ADS  Google Scholar 

  2. Y. Itaya, Y. Suematsu, S. Katayama, K. Koshino, S. Arai, Jpn. J. Appl. Phys. 18, 1795 (1979)

    Article  ADS  Google Scholar 

  3. H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, Y. Nannichi, Jpn. J. Appl. Phys. 12, 1585 (1973)

    Article  ADS  Google Scholar 

  4. B. Schwartz, W.W. Focht, N.K. Dutta, R.J. Nelson, P. Besomi, IEEE Trans, Electron. Dev. 31, 841 (1984)

    Article  ADS  Google Scholar 

  5. R.J. Nelson, R.B. Wilson, P.D. Wright, P.A. Barnes, N.K. Dutta, IEEE J. Quantum Electron. 17, 202 (1981)

    Article  ADS  Google Scholar 

  6. M. Nakamura, K. Aiki, J. Umeda, A. Katzir, A. Yariv, H.W. Yen, IEEE J. Quantum Electron. 11, 436 (1975)

    Article  ADS  Google Scholar 

  7. Z. Alferov, IEEE J. Sel. Topics Quantum Electron. 6, 832 (2000)

    Article  ADS  Google Scholar 

  8. S.W. Corzine, R.H. Yang, L.A. Coldren, Appl. Phys. Lett. 57, 2835 (1990)

    Article  ADS  Google Scholar 

  9. R. Dingle, C.H. Henry, Quantum effects in heterostructure lasers, U.S. Patent 3982207, Sept. 21, 1976

    Google Scholar 

  10. Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  11. M. Asada, Y. Miyamoto, Y. Suematsu, IEEE J. Quantum Electron. 22, 1915 (1986)

    Article  ADS  Google Scholar 

  12. A.Y. Liu, S. Srinivasan, J. Norman, A.C. Gossard, J.E. Bowers, Photonics Res. 3, B1 (2015)

    Article  Google Scholar 

  13. K.Y. Cheng, K.C. Hsieh, J.N. Baillargeon, Appl. Phys. Lett. 60, 2892 (1992)

    Article  ADS  Google Scholar 

  14. A.M. Moy, A.C. Chen, K.Y. Cheng, L.J. Chou, K.C. Hsieh, J. Cryst. Growth 175/176, 819 (1997)

    Google Scholar 

  15. D. Wohlert, K.Y. Cheng, S.T. Chou, Appl. Phys. Lett. 78, 1047 (2001)

    Article  ADS  Google Scholar 

  16. M. Asada, Y. Miyamoto, Y. Suematsu, Jpn. J. Appl. Phys. 24, L95 (1985)

    Article  ADS  Google Scholar 

  17. E. Towe, R.F. Leheny, A. Yang, IEEE J. Sel. Topics Quantum Electron. 6, 1458 (2000)

    Article  ADS  Google Scholar 

  18. H.C. Lin, Design and Fabrication of Long-Wavelength Vertical-Cavity Surface-Emitting Lasers using Wafer Bonding Technologies, Ph.D. Thesis, ECE Dept., University of Illinois at Urbana-Champaign, 2002

    Google Scholar 

  19. M.R. Krames et al., Appl. Phys. Lett. 75, 2365 (1999)

    Article  ADS  Google Scholar 

  20. M.G. Craford, Proc. IEEE 101, 2170 (2013)

    Article  Google Scholar 

  21. R. Kazarinov, R. Suris, Sov. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  22. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  23. J. Faist, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, S.-N.G. Chu, A.Y. Cho, Appl. Phys. Lett. 68, 3680 (1996)

    Google Scholar 

  24. A. Tridicucci, C. Gmachl, F. Capasso, D.L. Sivco, A.L. Hutchinson, A.Y. Cho, Appl. Phys. Lett. 74, 638 (1999)

    Article  ADS  Google Scholar 

  25. J. Faist, M. Beck, T. Aellen, E. Gini, Appl. Phys. Lett. 78, 147 (2001)

    Article  ADS  Google Scholar 

  26. C. Sirtori, J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, A.Y. Cho, Appl. Phys. Lett. 66, 3242 (1995)

    Article  ADS  Google Scholar 

  27. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D.L. Sivco, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 23, 1366 (1998)

    Article  ADS  Google Scholar 

  28. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H.Y. Hwang, A.M. Sergent, D.L. Sivco, A.Y. Cho, Appl. Phys. Lett. 80, 3060 (2002)

    Article  ADS  Google Scholar 

  29. C. Gmachl, F. Capasso, A. Tredicucci, D.L. Sivco, R. Kohler, A.L. Hutchinson, A.Y. Cho, J. Sel. Topic Quantum Electron. 5, 808 (1999)

    Article  ADS  Google Scholar 

  30. I. Vurgaftman, W.W. Bewley, C.L. Canedy, C.S. Kim, M. Kim, J.R. Lindle, C.D. Merritt, J. Abell, J.R. Meyer, IEEE J. Sel. Topics Quantum Electron. 17, 1435 (2011)

    Article  ADS  Google Scholar 

  31. L.C. West, S.J. Eglash, Appl. Phys. Lett. 46, 1156 (1985)

    Article  ADS  Google Scholar 

  32. B.F. Levine, K.K. Choi, C.G. Bethea, J. Walker, R.J. Malik, Appl. Phys. Lett. 50, 1092 (1987)

    Article  ADS  Google Scholar 

  33. B.F. Levine, A. Zussman, S.D. Gunapala, M.T. Asom, J.M. Kuo, W.S. Hobson, J. Appl. Phys. 72, 4429 (1992)

    Article  ADS  Google Scholar 

  34. S.D. Gunapala, S.V. Bandara, J.K. Liu, J.M. Mumolo, S.B. Rafol, D.Z. Ting, A. Soibel, C. Hill, IEEE J. Sel. Topics Quantum Electron. 20, 3802312 (2014)

    Article  Google Scholar 

  35. M. Feng, N. Holonyak Jr., H.W. Then, C.H. Wu, G. Walter, Appl. Phys. Lett. 94, 041118 (2009)

    Article  ADS  Google Scholar 

  36. M. Feng, N. Holonyak Jr., G. Walter, R. Chan, J. Appl. Phys. 87, 131103 (2005)

    Google Scholar 

  37. M. Feng, H.W. Then, N. Holonyak Jr., G. Walter, A. James, Appl. Phys. Lett. 95, 033509 (2009)

    Article  ADS  Google Scholar 

  38. H.W. Then, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 94, 013509 (2009)

    Article  ADS  Google Scholar 

  39. M. Feng, J. Qiu, C.Y. Wang, N. Holonyak Jr., Appl. Phys. Lett. 119, 084502 (2016)

    Google Scholar 

  40. H.W. Then, C.H. Wu, G. Walter, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 94, 101114 (2009)

    Article  ADS  Google Scholar 

  41. M. Feng, J. Qiu, C.Y. Wang, N. Holonyak Jr., J. Appl. Phys. 120, 204501 (2016)

    Article  ADS  Google Scholar 

  42. H.W. Then, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 91, 183505 (2007)

    Article  ADS  Google Scholar 

  43. G. Walter, C.H. Wu, H.W. Then, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 94, 231125 (2009)

    Article  ADS  Google Scholar 

Further Reading

  1. H.C. Casey, M.B. Panish, Heterostructure Lasers (Academic, New York, 1978)

    Google Scholar 

  2. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Academic, New York, 1991)

    Google Scholar 

  3. M. Fukuda, Reliability and Degradation of Semiconductor Lasers and LEDs (Artech House, Boston, 1991)

    Google Scholar 

  4. G.P. Agrawal, N.K. Dutta, Semiconductor Lasers, 2nd edn. (Van Nostrand Reinhold, New York, 1993)

    Google Scholar 

  5. T.E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies Press, Taunton, 1995)

    Google Scholar 

  6. E.F. Schubert, Light-Emitting Diodes, 2nd edn. (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  7. J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, A.Y. Cho, Quantum cascade lasers, in Semiconductors and Semimetals, 66, chap. 1 (2000), 1

    Google Scholar 

  8. F. Capasso, Opt. Eng. 49, 111102 (2010)

    Article  ADS  Google Scholar 

  9. J. Faist, Quantum Cascade Lasers (Oxford University Press, Oxford, United Kingdom, 2013)

    Book  Google Scholar 

  10. I. Vurgaftman, R. Weih, M. Kamp, J.R. Meyer, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Höfling, J. Phys. D Appl. Phys. 48, 123001 (2015)

    Article  ADS  Google Scholar 

  11. B.F. Levine, J. Appl. Phys. 74, R1 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. H.C. Liu, Quantum well infrared photodetector physics and novel devices, in Semiconductors and Semimetals, 62, chap. 3 (2000), 129

    Google Scholar 

  13. N. Holonyak, Jr., M. Feng, IEEE Spectrum, February (2006), pp. 50–55

    Google Scholar 

  14. H.W. Then, M. Feng, N. Holonyak Jr., Proc. IEEE 101, 2271 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keh Yung Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, K.Y. (2020). Heterostructure Photonic Devices. In: III–V Compound Semiconductors and Devices. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-51903-2_10

Download citation

Publish with us

Policies and ethics