Advertisement

Memristor Models and Emulators: A Literature Review

  • Abdullah G. Alharbi
  • Masud H. Chowdhury
Chapter
  • 45 Downloads

Abstract

With the introduction of HP’s proposed design of a memristive device, there has been a surge of interest to perform different theoretical and experimental works on memristor. However, due to the lack of a commercially available device or a validated academic prototype of a memristive device, researchers are relying on different circuit-based emulators and macro-models, which are developed using the defining equations of the HP’s proposed memristor. Although the linear HP model helped the community understand many aspects of the memristor, it failed to provide the actual nonlinear behaviors of the memristor. Later many other nonlinear models have been proposed. In this chapter, an overview of different linear and nonlinear models of the voltage-controlled and the current-controlled memristors is presented. A summary of currently available emulator circuit techniques is also included.

Keywords

Memristor model Ion drift model Window function Simmons Tunnel Barrier Model (STBM) ThrEshold Adaptive Memristor Model (TEAM) Generalized Memristor Model (GMM) General Voltage-Controlled VTEAM model Memristor SPICE models Memristor emulator circuits 

Bibliography

  1. 1.
    Alexander, C., & Sadiku, M. (2008). Fundamentals of electric circuits (4th ed., pp. 1–30). New York: McGraw-Hill Higher Education.Google Scholar
  2. 2.
    Chua, L. O. (1971). Memristor the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.Google Scholar
  3. 3.
    Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83.Google Scholar
  4. 4.
    Memristor and Memristive Systems Symposium. (2008). University of California. [Online]. https://www.youtube.com/watch?v=QFdDPzcZwbs. Accessed 26 Oct 2017.
  5. 5.
    Chua, L. O. (2014). If its pinched it’s a memristor. In Memristors and memristive systems (pp. 17–90). New York: Springer.Google Scholar
  6. 6.
    Widrow, B., et al. (1960). Adaptive “adaline” neuron using Chemical “memistors”. Stanford University, Stanford Electronics Laboratories. Technical report, 1553-2.Google Scholar
  7. 7.
    Adhikari, S. P., & Kim, H. (2014). Why are memristor and memistor different devices? In Memristor networks (pp. 95–112). Cham: Springer.zbMATHGoogle Scholar
  8. 8.
    Prodromakis, T., Toumazou, C., & Chua, L. O. (2012). Two centuries of memristors. Nature Materials, 11(6), 478–481.Google Scholar
  9. 9.
    Zidan, M. A. (2015). Memristor circuits and systems. Ph.D. thesis.Google Scholar
  10. 10.
    Chua, L. O. (2011). Resistance switching memories are memristors. Applied Physics A, 102(4), 765–783.zbMATHGoogle Scholar
  11. 11.
    Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223.MathSciNetGoogle Scholar
  12. 12.
    Waser, R., Dittmann, R., Staikov, G., & Szot, K. (2009). Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Advanced Materials, 21(25–26), 2632–2663.Google Scholar
  13. 13.
    Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I, 60(11), 3008–3021.Google Scholar
  14. 14.
    Biolek, D., Biolek, Z., Biolkova, V., & Kolka, Z. (2013). Some fingerprints of ideal memristors. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 201–204.Google Scholar
  15. 15.
    Williams, R. S. (2008). How we found the missing memristor. IEEE Spectrum, 45(12), 28–35.Google Scholar
  16. 16.
    Argall, F. (1968). Switching phenomena in titanium oxide thin films. Solid-State Electronics, 11(5), 535–541.Google Scholar
  17. 17.
    Chabi, D., Wang, Z., Bennett, C., Klein, J.-O., & Zhao, W. (2015). Ultrahigh density memristor neural crossbar for on-chip supervised learning. IEEE Transactions on Nanotechnology, 14(6), 954–962.Google Scholar
  18. 18.
    Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T., Srinivasa, N., & Lu, W. (2011). A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Letters, 12(1), 389–395.Google Scholar
  19. 19.
    Qureshi, M., Yi, W., Medeiros-Ribeiro, G., & Williams, R. (2012). AC sense technique for memristor crossbar. Electronics Letters, 48(13), 757–758.Google Scholar
  20. 20.
    Qureshi, M. S., Pickett, M., Miao, F., & Strachan, J. P. (2011). CMOS interface circuits for reading and writing memristor crossbar array. In IEEE international symposium on Circuits and systems (ISCAS), pp. 2954–2957.Google Scholar
  21. 21.
    Zidan, M. A., Omran, H., Sultan, A., Fahmy, H. A., & Salama, K. N. (2015). Compensated readout for high-density MOS-gated memristor crossbar array. IEEE Transactions on Nanotechnology, 14(1), 3–6.Google Scholar
  22. 22.
    Adam, G. C., Hoskins, B. D., Prezioso, M., Merrikh-Bayat, F., Chakrabarti, B., & Strukov, D. B. (2017). 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Transactions on Electron Devices, 64(1), 312–318.Google Scholar
  23. 23.
    Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G. S., & Linderman, R. W. (2014). Memristor crossbar-based neuromorphic computing system: A case study. IEEE Transactions on Neural Networks and Learning Systems, 25(10), 1864–1878.Google Scholar
  24. 24.
    Kim, Y., Zhang, Y., & Li, P. (2012). A digital neuromorphic VLSI architecture with memristor crossbar synaptic array for machine learning, In IEEE International SOC Conference (SOCC), pp. 328–333.Google Scholar
  25. 25.
    Olshausen, B. A., & Rozell, C. J. (2017). Neuromorphic computation: Sparse codes from memristor grids. Nature Nanotechnology, 12, 722–723.Google Scholar
  26. 26.
    Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G., Likharev, K. K., & Strukov, D. B. (2015). Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521, 61–64.Google Scholar
  27. 27.
    Truong, S. N., Van Pham, K., Yang, W., & Min, K.-S. (2016). Sequential Memristor crossbar for neuromorphic pattern recognition. IEEE Transactions on Nanotechnology, 15(6), 922–930.Google Scholar
  28. 28.
    Zidan, M., Jeong, Y., Shin, J. H., Du, C., Zhang, Z., & Lu, W. (2018). Field programmable crossbar array (FPCA) for reconfigurable computing. IEEE Transactions on Multi-Scale Computing Systems, 4(4), 698–710.Google Scholar
  29. 29.
    Adhikari, S. P., Yang, C., Kim, H., & Chua, L. O. (2012). Memristor bridge synapse based neural network and its learning. IEEE Transactions on Neural Networks and Learning Systems, 23(9), 1426–1435.Google Scholar
  30. 30.
    Bilotta, E., Pantano, P., & Vena, S. (2017). Speeding up cellular neural network processing ability by embodying memristors. IEEE Transactions on Neural Networks and Learning Systems, 28(5), 1228–1232.Google Scholar
  31. 31.
    Kim, H., Sah, M. P., Yang, C., Roska, T., & Chua, L. O. (2012). Neural synaptic weighting with a pulse-based memristor circuit. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(1), 148–158.MathSciNetGoogle Scholar
  32. 32.
    Li, T., Duan, S., Liu, J., Wang, L., & Huang, T. (2016). A spintronic memristor-based neural network with radial basis function for robotic manipulator control implementation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(4), 582–588.Google Scholar
  33. 33.
    Wu, A., & Zeng, Z. (2012). Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Networks, 36, 1–10.zbMATHGoogle Scholar
  34. 34.
    Corinto, F., Ascoli, A., & Gilli, M. (2011). Nonlinear dynamics of memristor oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(6), 1323–1336.MathSciNetGoogle Scholar
  35. 35.
    Corinto, F., & Forti, M. (2017). Nonlinear dynamics of memristor oscillators via the flux charge analysis method. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4.Google Scholar
  36. 36.
    Takahashi, Y., Sekine, T., & Yokoyama, M. (2017). Memristor-based pseudo-random pattern generator using relaxation oscillator. IEEJ Transactions on Electrical and Electronic Engineering, 12(6), 963–964.Google Scholar
  37. 37.
    Talukdar, A., Radwan, A. G., & Salama, K. N. (2011). Generalized model for memristor based Wien family oscillators. Microelectronics Journal, 42(9), 1032–1038.Google Scholar
  38. 38.
    Yu, D., Zhou, Z., Iu, H. H.-C., Fernando, T., & Hu, Y. (2016). A coupled Memcapacitor emulator-based relaxation oscillator. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(12), 1101–1105.Google Scholar
  39. 39.
    Zidan, M. A., Omran, H., Radwan, A. G., & Salama, K. N. (2011). Memristor-based reactance-less oscillator. Electronics Letters, 47(22), 1220–1221.Google Scholar
  40. 40.
    Iu, H. H.-C., Yu, D., Fitch, A. L., Sreeram, V., & Chen, H. (2011). Controlling chaos in a memristor based circuit using a twin-T notch filter. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(6), 1337–1344.MathSciNetGoogle Scholar
  41. 41.
    Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1857–1864.MathSciNetGoogle Scholar
  42. 42.
    Shin, S., Kim, K., & Kang, S.-M., (2009). Memristor-based fine resolution programmable resistance and its applications. In IEEE International Conference on Communications, Circuits and Systems (ICCCAS), pp. 948–951.Google Scholar
  43. 43.
    Shin, S., Kim, K., & Kang, S.-M. (2011). Memristor applications for programmable analog ICs. IEEE Transactions on Nanotechnology, 10(2), 266–274.Google Scholar
  44. 44.
    Wang, X., Iu, H. H., Wang, G., & Liu, W. (2016). Study on time domain characteristics of memristive RLC series circuits. Circuits, Systems, and Signal Processing, 35(11), 4129–4138.zbMATHGoogle Scholar
  45. 45.
    Zha, J., Huang, H., Huang, T., Cao, J., Alsaedi, A., & Alsaadi, F. E. (2017). A general memristor model and its applications in programmable analog circuits. Neurocomputing, 267, 134–140.Google Scholar
  46. 46.
    Zha, J., Huang, H., & Liu, Y. (2016). A novel window function for memristor model with application in programming analog circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(5), 423–427.Google Scholar
  47. 47.
    Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D. A., Wu, W., Stewart, D. R., & Williams, R. S. (2009). A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proceedings of the National Academy of Sciences, 106(6), 1699–1703.Google Scholar
  48. 48.
    Gao, L., Alibart, F., & Strukov, D. B. (2013). Programmable CMOS/memristor threshold logic. IEEE Transactions on Nanotechnology, 12(2), 115–119.Google Scholar
  49. 49.
    Guckert, L., & Swartzlander, E. E. (2017). MAD gates-memristor logic design using driver circuitry. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(2), 171–175.Google Scholar
  50. 50.
    Guckert, L., & Swartzlander, E. E. (2017). Optimized memristor-based multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(2), 373–385.Google Scholar
  51. 51.
    Owlia, H., Keshavarzi, P., & Rezai, A. (2014). A novel digital logic implementation approach on nanocrossbar arrays using memristor-based multiplexers. Microelectronics Journal, 45(6), 597–603.Google Scholar
  52. 52.
    Papandroulidakis, G., Vourkas, I., Abusleme, A., Sirakoulis, G. C., & Rubio, A. (2017). Crossbar-based Memristive logic-in-memory architecture. IEEE Transactions on Nanotechnology, 16(3), 491–501.Google Scholar
  53. 53.
    Pershin, Y. V., Shevchenko, S. N., & Nori, F. (2016). Memristive Sisyphus circuit for clock signal generation. Scientific Reports, 6, 26155.Google Scholar
  54. 54.
    Vourkas, I., & Sirakoulis, G. C. (2016). Emerging memristor-based logic circuit design approaches: A review. IEEE Circuits and Systems Magazine, 16(3), 15–30.Google Scholar
  55. 55.
    Xia, Q., Robinett, W., Cumbie, M. W., Banerjee, N., Cardinali, T. J., Yang, J. J., Wu, W., Li, X., Tong, W. M., Strukov, D. B., et al. (2009). Memristor- CMOS hybrid integrated circuits for reconfigurable logic. Nano Letters, 9(10), 3640–3645.Google Scholar
  56. 56.
    Zheng, J., Zeng, Z., & Zhu, Y. (2017) Memristor-based nonvolatile synchronous flip-flop circuits. In International Conference on Information Science and Technology (ICIST), IEEE, pp. 504–508.Google Scholar
  57. 57.
    Ascoli, A., Tetzlaff, R., Corinto, F., Mirchev, M., & Gilli, M., (2013) Memristor-based filtering applications. In 14th Latin American Test Workshop (LATW), IEEE, pp. 1–6.Google Scholar
  58. 58.
    Chew, Z., & Li, L. (2012). Printed circuit board based memristor in adaptive lowpass filter. Electronics Letters, 48(25), 1610–1611.Google Scholar
  59. 59.
    Driscoll, T., Quinn, J., Klein, S., Kim, H.-T., Kim, B., Pershin, Y. V., Di Ventra, M., & Basov, D. (2010). Memristive adaptive filters. Applied Physics Letters, 97(9), 093502.Google Scholar
  60. 60.
    Merrikh-Bayat, F., & Bagheri-Shouraki, S. (2011). Mixed analog-digital crossbar-based hardware implementation of sign–sign LMS adaptive filter. Analog Integrated Circuits and Signal Processing, 66(1), 41–48.Google Scholar
  61. 61.
    Volos, C., Vaidyanathan, S., Pham, V.-T., Nistazakis, H., Stouboulos, I., Kyprianidis, I., & Tombras, G. (2017). Adaptive control and synchronization of a Memristor based Shinrikis system. In Advances in Memristors, Memristive devices and systems (pp. 237–261). Cham: Springer.Google Scholar
  62. 62.
    Bao, B., Liu, Z., & Xu, J. (2010). Steady periodic memristor oscillator with transient chaotic behaviours. Electronics Letters, 46(3), 237–238.Google Scholar
  63. 63.
    Biolek, Z., Biolek, D., & Biolkova, V. (2009). SPICE model of Memristor with nonlinear dopant drift. Radioengineering, 18(2), 1087.zbMATHGoogle Scholar
  64. 64.
    Driscoll, T., Pershin, Y., Basov, D., & Di Ventra, M. (2011). Chaotic memristor. Applied Physics A: Materials Science & Processing, 102(4), 885–889.Google Scholar
  65. 65.
    Kumar, S., Strachan, J. P., & Williams, R. S. (2017). Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature, 548(7667), 318–321.Google Scholar
  66. 66.
    Zheng, C.-D., & Xian, Y. (2016). On synchronization for chaotic memristor-based neural networks with time-varying delays. Neurocomputing, 216, 570–586.Google Scholar
  67. 67.
    Abuelmaatti, M. T., & Khalifa, Z. J. (2014). A new memristor emulator and its application in digital modulation. Analog Integrated Circuits and Signal Processing, 80(3), 577–584.Google Scholar
  68. 68.
    Biolek, D., Biolkova, V., & Kolka, Z. (2014). Memristive systems for analog signal processing. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2588–2591.Google Scholar
  69. 69.
    Elashkar, N., Aboudina, M., Fahmy, H. A., Ibrahim, G. H., & Khalil, A. H. (2016). Memristor based BPSK and QPSK demodulators with nonlinear dopant drift model. Microelectronics Journal, 56, 17–24.Google Scholar
  70. 70.
    Elashkar, N., Ibrahim, G., Aboudina, M., Fahmy, H., & Khalil, A. (2016). All-passive memristor-based 8-QAM and BFSK demodulators using linear dopant drift model. In 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), IEEE, pp. 1–4.Google Scholar
  71. 71.
    Goknar, I. C., Oncul, F., & Minayi, E. (2013). New memristor applications: AM, ASK, FSK, and BPSK modulators. IEEE Antennas and Propagation Magazine, 55(2), 304–313.Google Scholar
  72. 72.
    Sanchez-Lopez, C., Aguila-Cuapio, L., Carro-Perez, I., & Gonzalez-Hernandez, H. (2016). High-level simulation of an FSK modulator based on memconductor. In Argentine Conference of MicroNanoelectronics, Technology and Applications (CAMTA), IEEE, pp. 1–5.Google Scholar
  73. 73.
    Vavra, J., & Biolek, D. (2017). An envelope detector based on Memristive systems. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2–7), 183–186.Google Scholar
  74. 74.
    Chanthbouala, A., Garcia, V., Cherifi, R. O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N. D., et al. (2012). A ferroelectric memristor. Nature Materials, 11(10), 860–864.Google Scholar
  75. 75.
    Mehonic, A., Cueff, S., Wojdak, M., Hudziak, S., Jambois, O., Labbe, C., Garrido, B., Rizk, R., & Kenyon, A. J. (2012). Resistive switching in silicon suboxide films. Journal of Applied Physics, 111(7), 074507.Google Scholar
  76. 76.
    Yang, Y., Choi, S., & Lu, W. (2013). Oxide heterostructure resistive memory. Nano Letters, 13(6), 2908–2915.Google Scholar
  77. 77.
    Chen, Y., Liu, G., Wang, C., Zhang, W., Li, R.-W., & Wang, L. (2014). Polymer memristor for information storage and neuromorphic applications. Materials Horizons, 1(5), 489–506.Google Scholar
  78. 78.
    Erokhin, V., & Fontana, M. P. (2008). Electrochemically controlled polymeric device: A memristor (and more) found two years ago. arXiv preprint, arXiv, 0807.0333.Google Scholar
  79. 79.
    Yilmaz, Y., & Mazumder, P. (2012). Programmable quantum-dots memristor based architecture for image processing. In 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1–4.Google Scholar
  80. 80.
    Wang, X., Chen, Y., Xi, H., Li, H., & Dimitrov, D. (2009). Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Letters, 30(3), 294–297.Google Scholar
  81. 81.
    Sangwan, V. K., Jariwala, D., Kim, I. S., Chen, K.-S., Marks, T. J., Lauhon, L. J., & Hersam, M. C. (2015). Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nature Nanotechnology, 10(5), 403–406.Google Scholar
  82. 82.
    Porro, S., Accornero, E., Pirri, C. F., & Ricciardi, C. (2015). Memristive devices based on graphene oxide. Carbon, 85, 383–396.Google Scholar
  83. 83.
    Russo, P., Xiao, M., & Zhou, N. Y. (2017). Carbon nanowalls: A new material for resistive switching memory devices. Carbon, 120, 54–62.Google Scholar
  84. 84.
    Abunahla, H., & Mohammad, B. (2018). Memristor device overview. In Memristor technology: Synthesis and modeling for sensing and security applications (pp. 1–29). Cham: Springer.Google Scholar
  85. 85.
    Mohanty, S. P. (2013). Memristor: From basics to deployment. IEEE Potentials, 32(3), 34–39.Google Scholar
  86. 86.
    Wang, L., Yang, C., Wen, J., Gai, S., & Peng, Y. (2015). Overview of emerging memristor families from resistive memristor to spintronic memristor. Journal of Materials Science: Materials in Electronics, 26(7), 4618–4628.Google Scholar
  87. 87.
    Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R., & Williams, R. S. (2009). Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 106(7), 074508.Google Scholar
  88. 88.
    Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013). TEAM: ThrEshold adaptive memristor model. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1), 211–221.MathSciNetGoogle Scholar
  89. 89.
    Yakopcic, C., Taha, T. M., Subramanyam, G., & Pino, R. E. (2012). Memristor SPICE modeling. In Advances in neuromorphic Memristor science and applications (pp. 211–244). New York: Springer.Google Scholar
  90. 90.
    Yakopcic, C., Taha, T. M., Subramanyam, G., Pino, R. E., & Rogers, S. (2011). A memristor device model. IEEE Electron Device Letters, 32(10), 1436–1438.Google Scholar
  91. 91.
    Kvatinsky, S., Ramadan, M., Friedman, E. G., & Kolodny, A. (2015). VTEAM: A general model for voltage-controlled memristors. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(8), 786–790.Google Scholar
  92. 92.
    Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: Properties of basic electrical circuits. European Journal of Physics, 30(4), 661.zbMATHGoogle Scholar
  93. 93.
    Biolek, Z., Biolek, D., & Biolkova, V. (2009). SPICE model of Memristor with nonlinear dopant drift. Radioengineering, 18(2), 1087.zbMATHGoogle Scholar
  94. 94.
    Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011). A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 58(9), 3099–3105.Google Scholar
  95. 95.
    Elgabra, H., Farhat, I. A., Al Hosani, A. S., Homouz, D., & Mohammad, B., (2012). Mathematical modeling of a memristor device. In International IEEE Conference on Innovations in Information Technology (IIT), pp. 156–161.Google Scholar
  96. 96.
    Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A., Stewart, D. R., & Williams, R. S. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 3(7), 429–433.Google Scholar
  97. 97.
    Abdalla, H., & Pickett, M. D. (2011). SPICE modeling of memristors. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1832–1835.Google Scholar
  98. 98.
    Biolek, D., Biolkova, V., & Kolka, Z. (2017). Modified MIM model of titanium dioxide memristor for reliable simulations in SPICE. In IEEE, 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), pp. 1–4.Google Scholar
  99. 99.
    Pershin, Y. V., & Di Ventra, M. (2012). SPICE model of memristive devices with threshold. arXiv preprint, arXiv, 1204.2600.Google Scholar
  100. 100.
    Vourkas, I., Batsos, A., & Sirakoulis, G. C. (2015). SPICE modeling of nonlinear memristive behavior. International Journal of Circuit Theory and Applications, 43(5), 553–565.Google Scholar
  101. 101.
    Yakopcic, C., Taha, T. M., Subramanyam, G., & Pino, R. E. (2013). Generalized memristive device SPICE model and its application in circuit design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(8), 1201–1214.Google Scholar
  102. 102.
    Zhang, Y., Zhang, X., & Yu, J. (2009). Approximated SPICE model for memristor. In IEEE International Conference on Communications, Circuits and Systems (ICCCAS), pp. 928–931.Google Scholar
  103. 103.
    Patterson, G., Sune, J., & Miranda, E. (2017). Voltage-driven hysteresis model for resistive switching: SPICE modeling and circuit applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(12), 2044–2051.Google Scholar
  104. 104.
    Garcia-Redondo, F., Gowers, R. P., Crespo-Yepes, A., Lopez-Vallejo, M., & Jiang, L. (2016). SPICE compact modeling of bipolar/unipolar memristor switching governed by electrical thresholds. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(8), 1255–1264.MathSciNetGoogle Scholar
  105. 105.
    Biolek, D. (2014). Memristor emulators. In Memristor networks (pp. 487–503). Cham: Springer.Google Scholar
  106. 106.
    Kolka, Z., Biolek, D., & Biolkova, V. (2012). Hybrid modelling and emulation of mem-systems. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 25(3), 216–225.Google Scholar
  107. 107.
    Kolka, Z., Biolkova, V., & Biolek, D. (2014). On hybrid emulation of mem-systems. In IEEE Proceedings of the 2014 European modelling symposium, Computer Society, pp. 490–494.Google Scholar
  108. 108.
    Biolek, D., Bajer, J., Biolkova, V., & Kolka, Z. (2011). Mutators for transforming nonlinear resistor into memristor. In 20th European Conference on Circuit Theory and Design (ECCTD), IEEE, pp. 488–491.Google Scholar
  109. 109.
    Abuelmaatti, M. T., & Khalifa, Z. J. (2015). A continuous-level memristor emulator and its application in a multivibrator circuit. AEU-International Journal of Electronics and Communications, 69(4), 771–775.Google Scholar
  110. 110.
    Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2422–2431.MathSciNetGoogle Scholar
  111. 111.
    Asapu, S., & Pershin, Y. V. (2015). Electromechanical emulator of memristive systems and devices. IEEE Transactions on Electron Devices, 62(11), 3678–3684.Google Scholar
  112. 112.
    Liu, W., Wang, F.-Q., & Ma, X.-K. (2015). A unified cubic flux-controlled memristor: Theoretical analysis, simulation and circuit experiment. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 28(3), 335–345.Google Scholar
  113. 113.
    Muthuswamy, B., & Kokate, P. P. (2009). Memristor-based chaotic circuits. IETE Technical Review, 26(6), 417–429.Google Scholar
  114. 114.
    Nguyen, V. H., Sohn, K. Y., & Song, H. (2016). On-printed circuit board emulator with controllability of pinched hysteresis loop for nanoscale\mathrm{ TiO} 2 thin-film memristor device. Journal of Computational Electronics, 15(3), 993–1002.Google Scholar
  115. 115.
    Zhong, G.-Q. (1994). Implementation of Chua’s circuit with a cubic nonlinearity. IEEE Transactions on Circuits and Systems-Part I-Fundamental Theory and Applications, 41(12), 934–940.Google Scholar
  116. 116.
    Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2013). A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(8), 487–491.Google Scholar
  117. 117.
    Fitch, A. L., Iu, H. H.-C., Wang, X., Sreeram, V., & Qi, W. (2012). Realization of an analog model of memristor based on light dependent resistor. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1139–1142.Google Scholar
  118. 118.
    Kumngern, M., & Moungnoul, P. (2015). A memristor emulator circuit based on operational transconductance amplifiers. In IEEE 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–5.Google Scholar
  119. 119.
    Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015). A novel memristor emulator based only on an exponential amplifier and ccii+. In IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 376–379.Google Scholar
  120. 120.
    Sanchez-Lopez, C., Mendoza-Lopez, J., Carrasco-Aguilar, M., & Muniz-Montero, C. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 309–313.Google Scholar
  121. 121.
    Minayi, E., & Goknar, I. C. (2013). Realization of a 4-port generalized mutator and its application to memstor1 simulations. In 8th International Conference on Electrical and Electronics Engineering (ELECO), IEEE, pp. 5–8.Google Scholar
  122. 122.
    Yesil, A., Babacan, Y., & Kacar, F. (2014). A new DDCC based memristor emulator circuit and its applications. Microelectronics Journal, 45(3), 282–287.Google Scholar
  123. 123.
    Koymen, I., & Drakakis, E. M. (2014). CMOS-based nanopower memristor dynamics emulator. In 14th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), IEEE, pp. 1–2.Google Scholar
  124. 124.
    Kuntman, H., et al. (2012). A new CMOS based memristor implementation. In IEEE, International Conference on Applied Electronics (AE), pp. 345–348.Google Scholar
  125. 125.
    Yener, S. C., & Kuntman, H. H. (2014). Fully CMOS memristor based chaotic circuit. Radioengineering, 23(4), 1140–1149.Google Scholar
  126. 126.
    Alharbi, A. G., Khalifa, Z. J., Fouda, M. E., & Chowdhury, M. H. (2015). A new simple emulator circuit for current controlled memristor. In IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 288–291.Google Scholar
  127. 127.
    Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015). Memristor emulator based on practical current controlled mode. In 58th International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, pp. 1–4.Google Scholar
  128. 128.
    Yu, D., Iu, H. H.-C., Fitch, A. L., & Liang, Y. (2014). A floating memristor emulator based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2888–2896.Google Scholar
  129. 129.
    Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2017). A novel flux-controlled Memristive emulator for analog applications. In Advances in Memristors, Memristive devices and systems (pp. 493–511). Cham: Springer.Google Scholar
  130. 130.
    Abuelmaatti, M. T., & Khalifa, Z. J. (2016). A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integrated Circuits and Signal Processing, 86(1), 141–147.Google Scholar
  131. 131.
    Budhathoki, R. K., Sah, M. P., Adhikari, S. P., Kim, H., & Chua, L. O. (2013). Composite behavior of multiple memristor circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(10), 2688–2700.MathSciNetzbMATHGoogle Scholar
  132. 132.
    Shin, S., Zheng, L., Weickhardt, G., Cho, S., & Kang, S.-M. S. (2013). Compact circuit model and hardware emulation for floating memristor devices. IEEE Circuits and Systems Magazine, 13(2), 42–55.Google Scholar
  133. 133.
    Yu, D., Iu, H. H.-C., Liang, Y., Fernando, T., & Chua, L. O. (2015). Dynamic behavior of coupled memristor circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(6), 1607–1616.MathSciNetGoogle Scholar
  134. 134.
    Sozen, H., & Cam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 89(3), 655–663.Google Scholar
  135. 135.
    El-Hassan, N. H., Kumar, T. N., & Almurib, H. A. F. (2017). Phase change memory cell emulator circuit design. Microelectronics Journal, 62, 65–71.Google Scholar
  136. 136.
    Alharbi, A. G., Fouda, M. E., Khalifa, Z. J., & Chowdhury, M. H. (2016). Simple generic memristor emulator for voltage-controlled models. In 59th International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, pp. 1–4.Google Scholar
  137. 137.
    Alharbi, A. G., Fouda, M. E., Khalifa, Z. J., & Chowdhury, M. H. (2017). Electrical nonlinearity emulation technique for current-controlled Memristive devices. IEEE Access, 5, 5399–5409.Google Scholar
  138. 138.
    Data Sheet AD844: Current Feedback Operational Amplifier (CFOA). Online. Available: www.analog.com. Accessed 26 Oct 2017.
  139. 139.
    Data Sheet AD633: Four-quadrant, Analog Multiplier. Online. Available: www.analog.com. Accessed 26 Oct 2017.
  140. 140.
    Yu, D., Zheng, C., Iu, H. H.-C., Fernando, T., & Chua, L. O. (2017). A new circuit for emulating Memristors using inductive coupling. IEEE Access, 5, 1284–1295.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Abdullah G. Alharbi
    • 1
  • Masud H. Chowdhury
    • 2
  1. 1.Department of Electrical EngineeringJouf UniversitySakakaSaudi Arabia
  2. 2.Department of Computer Science Electrical EngineeringUniversity of Missouri–Kansas CityKansas CityUSA

Personalised recommendations