Memristor Theory and Concepts

  • Abdullah G. Alharbi
  • Masud H. Chowdhury


Although the concept of the memristor (an amalgamation of the words: memory and resistor) was introduced 50 years ago, only recently research community has started seriously investigating various properties and potential applications of this nonlinear two-terminal electrical component. The absence of any reliable and practical physical device that can demonstrate the perceived behaviors of the memristor has been hindering the experimental work and the implementation of memristor-based applications. Therefore, most of the research works are still at the analytical stage and depend on mathematical models or emulator circuits of the memristor. In this chapter, the fundamental concepts and the theoretical background of memristor are briefly illustrated to provide a background for the memristor models and emulator circuits to be presented in this book.


Fundamental passive electrical elements Fundamental circuit variables Memristor definition Memristance Pinched hysteresis loop Charged-controlled memristor Flux-controlled memristor Memristor fingerprints Memristor model HP memristor Memristor emulator 


  1. 1.
    Alexander, C., & Sadiku, M. (2008). Fundamentals of electric circuits (4th ed., pp. 1–30). New York: McGraw-Hill Higher Education.Google Scholar
  2. 2.
    Chua, L. O. (1971). Memristor the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.Google Scholar
  3. 3.
    Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83.Google Scholar
  4. 4.
    Memristor and Memristive Systems Symposium. (2008). University of California. [Online]. Accessed 26 Oct 2017.
  5. 5.
    Chua, L. O. (2014). If its pinched it’s a memristor. In Memristors and memristive systems (pp. 17–90). New York: Springer.Google Scholar
  6. 6.
    Widrow, B., et al. (1960). Adaptive “adaline” neuron using Chemical “memistors”. Stanford University, Stanford Electronics Laboratories. Technical report, 1553-2.Google Scholar
  7. 7.
    Adhikari, S. P., & Kim, H. (2014). Why are memristor and memistor different devices? In Memristor networks (pp. 95–112). Cham: Springer.zbMATHGoogle Scholar
  8. 8.
    Prodromakis, T., Toumazou, C., & Chua, L. O. (2012). Two centuries of memristors. Nature Materials, 11(6), 478–481.Google Scholar
  9. 9.
    Zidan, M. A. (2015). Memristor circuits and systems. Ph.D. thesis.Google Scholar
  10. 10.
    Chua, L. O. (2011). Resistance switching memories are memristors. Applied Physics A, 102(4), 765–783.zbMATHGoogle Scholar
  11. 11.
    Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223.MathSciNetGoogle Scholar
  12. 12.
    Waser, R., Dittmann, R., Staikov, G., & Szot, K. (2009). Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Advanced Materials, 21(25–26), 2632–2663.Google Scholar
  13. 13.
    Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I, 60(11), 3008–3021.Google Scholar
  14. 14.
    Biolek, D., Biolek, Z., Biolkova, V., & Kolka, Z. (2013). Some fingerprints of ideal memristors. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 201–204.Google Scholar
  15. 15.
    Williams, R. S. (2008). How we found the missing memristor. IEEE Spectrum, 45(12), 28–35.Google Scholar
  16. 16.
    Argall, F. (1968). Switching phenomena in titanium oxide thin films. Solid-State Electronics, 11(5), 535–541.Google Scholar
  17. 17.
    Chabi, D., Wang, Z., Bennett, C., Klein, J.-O., & Zhao, W. (2015). Ultrahigh density memristor neural crossbar for on-chip supervised learning. IEEE Transactions on Nanotechnology, 14(6), 954–962.Google Scholar
  18. 18.
    Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T., Srinivasa, N., & Lu, W. (2011). A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Letters, 12(1), 389–395.Google Scholar
  19. 19.
    Qureshi, M., Yi, W., Medeiros-Ribeiro, G., & Williams, R. (2012). AC sense technique for memristor crossbar. Electronics Letters, 48(13), 757–758.Google Scholar
  20. 20.
    Qureshi, M. S., Pickett, M., Miao, F., & Strachan, J. P. (2011). CMOS interface circuits for reading and writing memristor crossbar array. In IEEE international symposium on Circuits and systems (ISCAS), pp. 2954–2957.Google Scholar
  21. 21.
    Zidan, M. A., Omran, H., Sultan, A., Fahmy, H. A., & Salama, K. N. (2015). Compensated readout for high-density MOS-gated memristor crossbar array. IEEE Transactions on Nanotechnology, 14(1), 3–6.Google Scholar
  22. 22.
    Adam, G. C., Hoskins, B. D., Prezioso, M., Merrikh-Bayat, F., Chakrabarti, B., & Strukov, D. B. (2017). 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Transactions on Electron Devices, 64(1), 312–318.Google Scholar
  23. 23.
    Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G. S., & Linderman, R. W. (2014). Memristor crossbar-based neuromorphic computing system: A case study. IEEE Transactions on Neural Networks and Learning Systems, 25(10), 1864–1878.Google Scholar
  24. 24.
    Kim, Y., Zhang, Y., & Li, P. (2012). A digital neuromorphic VLSI architecture with memristor crossbar synaptic array for machine learning, In IEEE International SOC Conference (SOCC), pp. 328–333.Google Scholar
  25. 25.
    Olshausen, B. A., & Rozell, C. J. (2017). Neuromorphic computation: Sparse codes from memristor grids. Nature Nanotechnology, 12, 722–723.Google Scholar
  26. 26.
    Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G., Likharev, K. K., & Strukov, D. B. (2015). Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521, 61–64.Google Scholar
  27. 27.
    Truong, S. N., Van Pham, K., Yang, W., & Min, K.-S. (2016). Sequential Memristor crossbar for neuromorphic pattern recognition. IEEE Transactions on Nanotechnology, 15(6), 922–930.Google Scholar
  28. 28.
    Zidan, M., Jeong, Y., Shin, J. H., Du, C., Zhang, Z., & Lu, W. (2018). Field programmable crossbar array (FPCA) for reconfigurable computing. IEEE Transactions on Multi-Scale Computing Systems, 4(4), 698–710.Google Scholar
  29. 29.
    Adhikari, S. P., Yang, C., Kim, H., & Chua, L. O. (2012). Memristor bridge synapse based neural network and its learning. IEEE Transactions on Neural Networks and Learning Systems, 23(9), 1426–1435.Google Scholar
  30. 30.
    Bilotta, E., Pantano, P., & Vena, S. (2017). Speeding up cellular neural network processing ability by embodying memristors. IEEE Transactions on Neural Networks and Learning Systems, 28(5), 1228–1232.Google Scholar
  31. 31.
    Kim, H., Sah, M. P., Yang, C., Roska, T., & Chua, L. O. (2012). Neural synaptic weighting with a pulse-based memristor circuit. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(1), 148–158.MathSciNetGoogle Scholar
  32. 32.
    Li, T., Duan, S., Liu, J., Wang, L., & Huang, T. (2016). A spintronic memristor-based neural network with radial basis function for robotic manipulator control implementation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(4), 582–588.Google Scholar
  33. 33.
    Wu, A., & Zeng, Z. (2012). Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Networks, 36, 1–10.zbMATHGoogle Scholar
  34. 34.
    Corinto, F., Ascoli, A., & Gilli, M. (2011). Nonlinear dynamics of memristor oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(6), 1323–1336.MathSciNetGoogle Scholar
  35. 35.
    Corinto, F., & Forti, M. (2017). Nonlinear dynamics of memristor oscillators via the flux charge analysis method. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4.Google Scholar
  36. 36.
    Takahashi, Y., Sekine, T., & Yokoyama, M. (2017). Memristor-based pseudo-random pattern generator using relaxation oscillator. IEEJ Transactions on Electrical and Electronic Engineering, 12(6), 963–964.Google Scholar
  37. 37.
    Talukdar, A., Radwan, A. G., & Salama, K. N. (2011). Generalized model for memristor based Wien family oscillators. Microelectronics Journal, 42(9), 1032–1038.Google Scholar
  38. 38.
    Yu, D., Zhou, Z., Iu, H. H.-C., Fernando, T., & Hu, Y. (2016). A coupled Memcapacitor emulator-based relaxation oscillator. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(12), 1101–1105.Google Scholar
  39. 39.
    Zidan, M. A., Omran, H., Radwan, A. G., & Salama, K. N. (2011). Memristor-based reactance-less oscillator. Electronics Letters, 47(22), 1220–1221.Google Scholar
  40. 40.
    Iu, H. H.-C., Yu, D., Fitch, A. L., Sreeram, V., & Chen, H. (2011). Controlling chaos in a memristor based circuit using a twin-T notch filter. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(6), 1337–1344.MathSciNetGoogle Scholar
  41. 41.
    Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1857–1864.MathSciNetGoogle Scholar
  42. 42.
    Shin, S., Kim, K., & Kang, S.-M., (2009). Memristor-based fine resolution programmable resistance and its applications. In IEEE International Conference on Communications, Circuits and Systems (ICCCAS), pp. 948–951.Google Scholar
  43. 43.
    Shin, S., Kim, K., & Kang, S.-M. (2011). Memristor applications for programmable analog ICs. IEEE Transactions on Nanotechnology, 10(2), 266–274.Google Scholar
  44. 44.
    Wang, X., Iu, H. H., Wang, G., & Liu, W. (2016). Study on time domain characteristics of memristive RLC series circuits. Circuits, Systems, and Signal Processing, 35(11), 4129–4138.zbMATHGoogle Scholar
  45. 45.
    Zha, J., Huang, H., Huang, T., Cao, J., Alsaedi, A., & Alsaadi, F. E. (2017). A general memristor model and its applications in programmable analog circuits. Neurocomputing, 267, 134–140.Google Scholar
  46. 46.
    Zha, J., Huang, H., & Liu, Y. (2016). A novel window function for memristor model with application in programming analog circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(5), 423–427.Google Scholar
  47. 47.
    Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D. A., Wu, W., Stewart, D. R., & Williams, R. S. (2009). A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proceedings of the National Academy of Sciences, 106(6), 1699–1703.Google Scholar
  48. 48.
    Gao, L., Alibart, F., & Strukov, D. B. (2013). Programmable CMOS/memristor threshold logic. IEEE Transactions on Nanotechnology, 12(2), 115–119.Google Scholar
  49. 49.
    Guckert, L., & Swartzlander, E. E. (2017). MAD gates-memristor logic design using driver circuitry. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(2), 171–175.Google Scholar
  50. 50.
    Guckert, L., & Swartzlander, E. E. (2017). Optimized memristor-based multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(2), 373–385.Google Scholar
  51. 51.
    Owlia, H., Keshavarzi, P., & Rezai, A. (2014). A novel digital logic implementation approach on nanocrossbar arrays using memristor-based multiplexers. Microelectronics Journal, 45(6), 597–603.Google Scholar
  52. 52.
    Papandroulidakis, G., Vourkas, I., Abusleme, A., Sirakoulis, G. C., & Rubio, A. (2017). Crossbar-based Memristive logic-in-memory architecture. IEEE Transactions on Nanotechnology, 16(3), 491–501.Google Scholar
  53. 53.
    Pershin, Y. V., Shevchenko, S. N., & Nori, F. (2016). Memristive Sisyphus circuit for clock signal generation. Scientific Reports, 6, 26155.Google Scholar
  54. 54.
    Vourkas, I., & Sirakoulis, G. C. (2016). Emerging memristor-based logic circuit design approaches: A review. IEEE Circuits and Systems Magazine, 16(3), 15–30.Google Scholar
  55. 55.
    Xia, Q., Robinett, W., Cumbie, M. W., Banerjee, N., Cardinali, T. J., Yang, J. J., Wu, W., Li, X., Tong, W. M., Strukov, D. B., et al. (2009). Memristor- CMOS hybrid integrated circuits for reconfigurable logic. Nano Letters, 9(10), 3640–3645.Google Scholar
  56. 56.
    Zheng, J., Zeng, Z., & Zhu, Y. (2017) Memristor-based nonvolatile synchronous flip-flop circuits. In International Conference on Information Science and Technology (ICIST), IEEE, pp. 504–508.Google Scholar
  57. 57.
    Ascoli, A., Tetzlaff, R., Corinto, F., Mirchev, M., & Gilli, M., (2013) Memristor-based filtering applications. In 14th Latin American Test Workshop (LATW), IEEE, pp. 1–6.Google Scholar
  58. 58.
    Chew, Z., & Li, L. (2012). Printed circuit board based memristor in adaptive lowpass filter. Electronics Letters, 48(25), 1610–1611.Google Scholar
  59. 59.
    Driscoll, T., Quinn, J., Klein, S., Kim, H.-T., Kim, B., Pershin, Y. V., Di Ventra, M., & Basov, D. (2010). Memristive adaptive filters. Applied Physics Letters, 97(9), 093502.Google Scholar
  60. 60.
    Merrikh-Bayat, F., & Bagheri-Shouraki, S. (2011). Mixed analog-digital crossbar-based hardware implementation of sign–sign LMS adaptive filter. Analog Integrated Circuits and Signal Processing, 66(1), 41–48.Google Scholar
  61. 61.
    Volos, C., Vaidyanathan, S., Pham, V.-T., Nistazakis, H., Stouboulos, I., Kyprianidis, I., & Tombras, G. (2017). Adaptive control and synchronization of a Memristor based Shinrikis system. In Advances in Memristors, Memristive devices and systems (pp. 237–261). Cham: Springer.Google Scholar
  62. 62.
    Bao, B., Liu, Z., & Xu, J. (2010). Steady periodic memristor oscillator with transient chaotic behaviours. Electronics Letters, 46(3), 237–238.Google Scholar
  63. 63.
    Biolek, Z., Biolek, D., & Biolkova, V. (2009). SPICE model of Memristor with nonlinear dopant drift. Radioengineering, 18(2), 1087.zbMATHGoogle Scholar
  64. 64.
    Driscoll, T., Pershin, Y., Basov, D., & Di Ventra, M. (2011). Chaotic memristor. Applied Physics A: Materials Science & Processing, 102(4), 885–889.Google Scholar
  65. 65.
    Kumar, S., Strachan, J. P., & Williams, R. S. (2017). Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature, 548(7667), 318–321.Google Scholar
  66. 66.
    Zheng, C.-D., & Xian, Y. (2016). On synchronization for chaotic memristor-based neural networks with time-varying delays. Neurocomputing, 216, 570–586.Google Scholar
  67. 67.
    Abuelmaatti, M. T., & Khalifa, Z. J. (2014). A new memristor emulator and its application in digital modulation. Analog Integrated Circuits and Signal Processing, 80(3), 577–584.Google Scholar
  68. 68.
    Biolek, D., Biolkova, V., & Kolka, Z. (2014). Memristive systems for analog signal processing. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2588–2591.Google Scholar
  69. 69.
    Elashkar, N., Aboudina, M., Fahmy, H. A., Ibrahim, G. H., & Khalil, A. H. (2016). Memristor based BPSK and QPSK demodulators with nonlinear dopant drift model. Microelectronics Journal, 56, 17–24.Google Scholar
  70. 70.
    Elashkar, N., Ibrahim, G., Aboudina, M., Fahmy, H., & Khalil, A. (2016). All-passive memristor-based 8-QAM and BFSK demodulators using linear dopant drift model. In 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), IEEE, pp. 1–4.Google Scholar
  71. 71.
    Goknar, I. C., Oncul, F., & Minayi, E. (2013). New memristor applications: AM, ASK, FSK, and BPSK modulators. IEEE Antennas and Propagation Magazine, 55(2), 304–313.Google Scholar
  72. 72.
    Sanchez-Lopez, C., Aguila-Cuapio, L., Carro-Perez, I., & Gonzalez-Hernandez, H. (2016). High-level simulation of an FSK modulator based on memconductor. In Argentine Conference of MicroNanoelectronics, Technology and Applications (CAMTA), IEEE, pp. 1–5.Google Scholar
  73. 73.
    Vavra, J., & Biolek, D. (2017). An envelope detector based on Memristive systems. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2–7), 183–186.Google Scholar
  74. 74.
    Chanthbouala, A., Garcia, V., Cherifi, R. O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N. D., et al. (2012). A ferroelectric memristor. Nature Materials, 11(10), 860–864.Google Scholar
  75. 75.
    Mehonic, A., Cueff, S., Wojdak, M., Hudziak, S., Jambois, O., Labbe, C., Garrido, B., Rizk, R., & Kenyon, A. J. (2012). Resistive switching in silicon suboxide films. Journal of Applied Physics, 111(7), 074507.Google Scholar
  76. 76.
    Yang, Y., Choi, S., & Lu, W. (2013). Oxide heterostructure resistive memory. Nano Letters, 13(6), 2908–2915.Google Scholar
  77. 77.
    Chen, Y., Liu, G., Wang, C., Zhang, W., Li, R.-W., & Wang, L. (2014). Polymer memristor for information storage and neuromorphic applications. Materials Horizons, 1(5), 489–506.Google Scholar
  78. 78.
    Erokhin, V., & Fontana, M. P. (2008). Electrochemically controlled polymeric device: A memristor (and more) found two years ago. arXiv preprint, arXiv, 0807.0333.Google Scholar
  79. 79.
    Yilmaz, Y., & Mazumder, P. (2012). Programmable quantum-dots memristor based architecture for image processing. In 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1–4.Google Scholar
  80. 80.
    Wang, X., Chen, Y., Xi, H., Li, H., & Dimitrov, D. (2009). Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Letters, 30(3), 294–297.Google Scholar
  81. 81.
    Sangwan, V. K., Jariwala, D., Kim, I. S., Chen, K.-S., Marks, T. J., Lauhon, L. J., & Hersam, M. C. (2015). Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nature Nanotechnology, 10(5), 403–406.Google Scholar
  82. 82.
    Porro, S., Accornero, E., Pirri, C. F., & Ricciardi, C. (2015). Memristive devices based on graphene oxide. Carbon, 85, 383–396.Google Scholar
  83. 83.
    Russo, P., Xiao, M., & Zhou, N. Y. (2017). Carbon nanowalls: A new material for resistive switching memory devices. Carbon, 120, 54–62.Google Scholar
  84. 84.
    Abunahla, H., & Mohammad, B. (2018). Memristor device overview. In Memristor technology: Synthesis and modeling for sensing and security applications (pp. 1–29). Cham: Springer.Google Scholar
  85. 85.
    Mohanty, S. P. (2013). Memristor: From basics to deployment. IEEE Potentials, 32(3), 34–39.Google Scholar
  86. 86.
    Wang, L., Yang, C., Wen, J., Gai, S., & Peng, Y. (2015). Overview of emerging memristor families from resistive memristor to spintronic memristor. Journal of Materials Science: Materials in Electronics, 26(7), 4618–4628.Google Scholar
  87. 87.
    Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R., & Williams, R. S. (2009). Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 106(7), 074508.Google Scholar
  88. 88.
    Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013). TEAM: ThrEshold adaptive memristor model. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1), 211–221.MathSciNetGoogle Scholar
  89. 89.
    Yakopcic, C., Taha, T. M., Subramanyam, G., & Pino, R. E. (2012). Memristor SPICE modeling. In Advances in neuromorphic Memristor science and applications (pp. 211–244). New York: Springer.Google Scholar
  90. 90.
    Yakopcic, C., Taha, T. M., Subramanyam, G., Pino, R. E., & Rogers, S. (2011). A memristor device model. IEEE Electron Device Letters, 32(10), 1436–1438.Google Scholar
  91. 91.
    Kvatinsky, S., Ramadan, M., Friedman, E. G., & Kolodny, A. (2015). VTEAM: A general model for voltage-controlled memristors. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(8), 786–790.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Abdullah G. Alharbi
    • 1
  • Masud H. Chowdhury
    • 2
  1. 1.Department of Electrical EngineeringJouf UniversitySakakaSaudi Arabia
  2. 2.Department of Computer Science Electrical EngineeringUniversity of Missouri–Kansas CityKansas CityUSA

Personalised recommendations