Skip to main content

Estimating Facial Aging Using Light Scattering Photometry

  • Chapter
  • First Online:
Advances in Photometric 3D-Reconstruction

Abstract

Facial aging is a complex process, and the changes in the inner layers of the skin will affect how the light scatters from the skin. To observe whether a light scattering model parameter is suitable to be used for age classification/estimation, this study investigated and analyzed the relationship between the parameter of an analytical-based light scattering model and skins of various ages using photometry method. Multiple models are used to investigate and compare the relationship between the model parameters and the subject’s age. The results show that all of the models’ roughness parameter representation has a significant positive correlation with age (\(p<0.05\)), making it a suitable choice to be made as a feature for estimating/classifying age. This study proves that the parameter(s) for an analytical-based light scattering model can be used as an alternative method for estimating/classifying a person’s age, provided that we know the light incidence and reflectance angles. In the future, this method can be used to work with other age extractors/estimators/classifiers, for the purpose of designing a more robust age estimation/classification method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu Y, Guo G, Huang TS (2010) Age synthesis and estimation via faces: a survey. IEEE Trans Pattern Anal Mach Intell 32(11):1955–1976

    Google Scholar 

  2. Ramanathan N, Chellappa R (2006) Modeling age progression in young faces. In: 2006 IEEE computer society conference on computer vision and pattern recognition, vol 1. IEEE

    Google Scholar 

  3. Rhodes MG (2009) Age estimation of faces: a review. Appl Cognit Psychol 23(1):1–12

    Google Scholar 

  4. Fink B et al (2011) Differences in visual perception of age and attractiveness of female facial and body skin. Inter J Cosmetic Sci 33(2): 26–131

    Google Scholar 

  5. Fink B, Grammer K, Matts PJ (2006) Visible skin color distribution plays a role in the perception of age, attractiveness, and health in female faces. Evol Human Behav 27(6):433–442

    Google Scholar 

  6. Zimbler MS, Kokoska MS, Regan Thomas J (2001) Anatomy and pathophysiology of facial aging. Facial Plastic Surg Clin North Am 9(2):179–187

    Google Scholar 

  7. Igarashi T, Nishino K, Nayar SK (2007) The appearance of human skin: a survey. Found Trends Comput Graph Vis 3(1):1–95

    Google Scholar 

  8. Ramanathan N, Chellappa R, Biswas S (2009) Age progression in human faces: a survey. J Vis Lang Comput 15:3349–3361

    Google Scholar 

  9. Ramanathan N, Chellappa R, Biswas S (2009) Computational methods for modeling facial aging: a survey. J Vis Lang Comput 20(3):131–144

    Google Scholar 

  10. Anderson RR, Parrish JA (1981) The optics of human skin. J Invest Dermatol 77(1):13–19

    Google Scholar 

  11. Anderson RR, Parrish JA (1982) Optical properties of human skin. In: The science of photomedicine. Springer, Boston, pp 147–194

    Google Scholar 

  12. Neerken S, et al (2004) Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Optics 9(2):274–282

    Google Scholar 

  13. O’Toole AJ, et al (1999) 3D shape and 2D surface textures of human faces: the role of “averages” in attractiveness and age. Image Visi Comput 18(1):9–19

    Google Scholar 

  14. Liu Z, Zhang Z, Shan Y (2004) Image-based surface detail transfer. IEEE Comput Graph Appl 24(3):30–35

    Google Scholar 

  15. Vetter T (1998) Synthesis of novel views from a single face image. Int J Comput Vis 28(2):103–116

    MathSciNet  Google Scholar 

  16. Golovinskiy A, et al (2006) A statistical model for synthesis of detailed facial geometry. ACM Trans Graph (TOG) 25(3):1025–1034

    Google Scholar 

  17. Patterson E, et al (2007) Aspects of age variation in facial morphology affecting biometrics. In: BTAS 2007. First IEEE international conference on biometrics: theory, applications, and systems, 2007. IEEE

    Google Scholar 

  18. Kwon YH, da Vitoria Lobo N (1999) Age classification from facial images. Comput Vis Image Underst 74(1):1–21

    Google Scholar 

  19. Geng X, Zhou Z-H, Smith-Miles K (2007) Automatic age estimation based on facial aging patterns. IEEE Trans Pattern Anal Mach Intell 29(12):2234–2240

    Google Scholar 

  20. Fu Y, Xu Y, Huang TS (2007) Estimating human age by manifold analysis of face pictures and regression on aging features. In: 2007 IEEE international conference on multimedia and expo. IEEE

    Google Scholar 

  21. Choi SE, et al (2011) Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognit 44(6):1262–1281

    Google Scholar 

  22. Han H, et al (2015) Demographic estimation from face images: human vs. machine performance. IEEE Trans Pattern Anal Mach Intell 37(6):1148–1161

    Google Scholar 

  23. Montes Soldado R, Ureña Almagro C (2012) An overview of BRDF models

    Google Scholar 

  24. Forsyth DA, Ponce J (2012) Computer vision: a modern approach, 2nd edn. Pearson, London

    Google Scholar 

  25. Wynn C (2000) An introduction to BRDF-based lighting. Nvidia Corporation

    Google Scholar 

  26. Hanrahan P, Krueger W (1993) Reflection from layered surfaces due to subsurface scattering. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques. ACM

    Google Scholar 

  27. Koenderink J, Pont S (2003) The secret of velvety skin. Mach Vis Appl 14(4):260–268

    Google Scholar 

  28. Tsumura N, et al (2003) Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. ACM Trans Graph (TOG) 22(3):770–779

    Google Scholar 

  29. Krishnaswamy A, Baranoski GVG (2004) A biophysically-based spectral model of light interaction with human skin. In: Computer graphics forum, vol 23. No. 3. Blackwell Publishing, Inc, Malden

    Google Scholar 

  30. Iglesias–Guitian JA, et al (2015) A biophysically-based model of the optical properties of skin aging. Comput Graph Forum 34(2)

    Google Scholar 

  31. Weyrich T, et al (2006) Analysis of human faces using a measurement-based skin reflectance model. ACM Trans Graph (TOG). vol 25. No. 3. ACM

    Google Scholar 

  32. Donner C, Jensen HW (2006) A spectral BSSRDF for shading human skin. Rendering techniques 2006, pp 409–418

    Google Scholar 

  33. Donner C, et al (2008) A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans Graph (TOG), vol. 27. No. 5. ACM

    Google Scholar 

  34. Ma W-C, et al. (2007) Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: Proceedings of the 18th Eurographics conference on rendering techniques. Eurographics Association

    Google Scholar 

  35. Ragheb H, Hancock ER (2008) A light scattering model for layered dielectrics with rough surface boundaries. Int J Comput Vis 79(2):179–207

    Google Scholar 

  36. Dahlan HA, Hancock ER (2016) Absorptive scattering model for rough laminar surfaces. In: 2016 23rd international conference on pattern recognition (ICPR). IEEE

    Google Scholar 

  37. Oren M, Nayar SK (1994) Generalization of Lambert’s reflectance model. In: Proceedings of the 21st annual conference on computer graphics and interactive techniques

    Google Scholar 

  38. Jensen HW, et al (2001) A practical model for subsurface light transport. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. ACM

    Google Scholar 

  39. Dutta A (2010) Face shape and reflectance acquisition using a multispectral light stage. University of York, Diss

    Google Scholar 

  40. Fitzpatrick TB (1988) The validity and practicality of sun-reactive skin types I through VI. Archives of dermatology, vol. 124. No. 6. American Medical Association, pp 869–871

    Google Scholar 

  41. Dahlan HA, Hancock ER, Smith WAP (2016) Reflectance-aware optical flow. In: 2016 23rd international conference on pattern recognition (ICPR). IEEE

    Google Scholar 

  42. Shirakabe Y, Suzuki Y, Lam SM (2003) A new paradigm for the aging Asian face. Aesthetic Plast Surg 27(5):397–402

    Google Scholar 

  43. Liew S, et al (2016) Consensus on changing trends, attitudes, and concepts of Asian beauty. Aesthetic Plast Surg 40(2):193–201

    Google Scholar 

  44. Vashi NA, De Castro Maymone MB, Kundu RV (2016) Aging differences in ethnic skin. J Clin Aesthetic Dermatol 9(1):31

    Google Scholar 

  45. Talakoub L, Wesley NO (2009) Differences in perceptions of beauty and cosmetic procedures performed in ethnic patients. Seminars in cutaneous medicine and surgery, vol 28. No 2. Frontline Medical Communications

    Google Scholar 

  46. Rawlings AV (2006) Ethnic skin types: are there differences in skin structure and function? Int J Cosmet Sci 28(2):79–93

    MathSciNet  Google Scholar 

  47. Fink B et al (2012) Colour homogeneity and visual perception of age, health and attractiveness of male facial skin. J Eur Acad Dermatol Venereol 26(12):1486–1492

    Google Scholar 

  48. Matts PJ, et al (2007) Color homogeneity and visual perception of age, health, and attractiveness of female facial skin. J Am Acad Dermatol 57(6):977–984

    Google Scholar 

  49. Vapnik V (2013) The nature of statistical learning theory. Springer Science & Business Media, Berlin

    Google Scholar 

  50. Calin MA, Parasca SV (2010) In vivo study of age-related changes in the optical properties of the skin. Lasers Med Sci 25(2):269–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi A. Dahlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahlan, H.A., Hancock, E.R. (2020). Estimating Facial Aging Using Light Scattering Photometry. In: Durou, JD., Falcone, M., Quéau, Y., Tozza, S. (eds) Advances in Photometric 3D-Reconstruction. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-51866-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51866-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51865-3

  • Online ISBN: 978-3-030-51866-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics