Skip to main content

On the Well-Posedness of Uncalibrated Photometric Stereo Under General Lighting

  • Chapter
  • First Online:
Advances in Photometric 3D-Reconstruction

Abstract

Uncalibrated photometric stereo aims at estimating the 3D-shape of a surface, given a set of images captured from the same viewing angle, but under unknown, varying illumination. While the theoretical foundations of this inverse problem under directional lighting are well-established, there is a lack of mathematical evidence for the uniqueness of a solution under general lighting. On the other hand, stable and accurate heuristical solutions of uncalibrated photometric stereo under such general lighting have recently been proposed. The quality of the results demonstrated therein tends to indicate that the problem may actually be well-posed, but this still has to be established. The present paper addresses this theoretical issue, considering first-order spherical harmonics approximation of general lighting. Two important theoretical results are established. First, the orthographic integrability constraint ensures uniqueness of a solution up to a global concave–convex ambiguity, which had already been conjectured, yet not proven. Second, the perspective integrability constraint makes the problem well-posed, which generalizes a previous result limited to directional lighting. Eventually, a closed-form expression for the unique least-squares solution of the problem under perspective projection is provided, allowing numerical simulations on synthetic data to empirically validate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Joyful Yell: https://www.thingiverse.com/thing:897412; other datasets: http://www-graphics.stanford.edu/data/3dscanrep.

References

  1. Bartal O, Ofir N, Lipman Y, Basri R (2018) Photometric stereo by hemispherical metric embedding. J Math Imaging Vis 60(2):148–162

    MathSciNet  MATH  Google Scholar 

  2. Basri R, Jacobs DW (2003) Lambertian reflectances and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233

    Google Scholar 

  3. Basri R, Jacobs DW, Kemelmacher I (2007) Photometric stereo with general, unknown lighting. Int J Comput Vis 72(3):239–257

    Google Scholar 

  4. Belhumeur PN, Kriegman DJ, Yuille AL (1999) The bas-relief ambiguity. Int J Comput Vis 35(1):33–44

    Google Scholar 

  5. Breuß M, Cristiani E, Durou J-D, Falcone M, Vogel O (2012) Perspective shape from shading: ambiguity analysis and numerical approximations. SIAM J Imaging Sci 5(1):311–342

    MathSciNet  MATH  Google Scholar 

  6. Chen G, Han K, Shi B, Matsushita Y, Wong K-YK (2019) Self-calibrating deep photometric stereo networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 8739–8747

    Google Scholar 

  7. Chen L, Zheng Y, Shi B, Subpa-Asa A, Sato I (2019) A microfacet-based model for photometric stereo with general isotropic reflectance. IEEE Trans Pattern Anal Mach Intell (in press)

    Google Scholar 

  8. Durou J-D, Falcone M, Sagona M (2008) Numerical methods for shape-from-shading: a new survey with benchmarks. Comput Vis Image Underst 109(1):22–43

    Google Scholar 

  9. Einstein A (1905) Zur elektrodynamik bewegter körper. Annalen der physik 322(10):891–921

    MATH  Google Scholar 

  10. Frolova D, Simakov D, Basri R (2004) Accuracy of spherical harmonic approximations for images of Lambertian objects under far and near lighting. In: Proceedings of the European conference on computer vision (ECCV), pp 574–587

    Google Scholar 

  11. Haefner B, Ye Z, Gao M, Wu T, Quéau Y, Cremers D (2019) Variational uncalibrated photometric stereo under general lighting. In: Proceedings of the international conference on computer vision (ICCV)

    Google Scholar 

  12. Hayakawa H (1994) Photometric stereo under a light source with arbitrary motion. J Opt Soc Am A 11(11):3079–3089

    Google Scholar 

  13. Ikehata S (2018) CNN-PS: CNN-based photometric stereo for general non-convex surfaces. In: Proceedings of the European conference on computer vision (ECCV), pp 3–18

    Google Scholar 

  14. Jaffe A (2013) Lorentz transformations, rotations, and boosts, 2013. Online notes. http://home.ku.edu.tr/~amostafazadeh/phys517_518/phys517_2016f/Handouts/A_Jaffi_Lorentz_Group.pdf. Accessed Sept 2019

  15. Khanian M, Boroujerdi AS, Breuß M (2018) Photometric stereo for strong specular highlights. Comput Visual Media 4(1):83–102

    Google Scholar 

  16. Kozera R, Prokopenya A (2018) Second-order algebraic surfaces and two image photometric stereo. In: International conference on computer vision and graphics, pp 234–247

    Google Scholar 

  17. Li J, Robles-Kelly A, You S, Matsushita Y (2019) Learning to minify photometric stereo. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 7568–7576

    Google Scholar 

  18. Logothetis F, Mecca R, Quéau Y, Cipolla R (2016) Near-field photometric stereo in ambient light. In: Proceedings of the British machine vision conference (BMVC)

    Google Scholar 

  19. Longuet-Higgins HC (1987) A computer algorithm for reconstructing a scene from two projections. In: Fischler MA, Firschein O (eds) Readings in computer vision. Morgan Kaufmann, Burlington, pp 61–62

    Google Scholar 

  20. Mecca R, Falcone M (2013) Uniqueness and approximation of a photometric shape-from-shading model. SIAM J Imaging Sci 6(1):616–659

    MathSciNet  MATH  Google Scholar 

  21. Mecca R, Wetzler A, Bruckstein AM, Kimmel R (2014) Near field photometric stereo with point light sources. SIAM J Imaging Sci 7(4):2732–2770

    MathSciNet  MATH  Google Scholar 

  22. Mecca R, Quéau Y, Logothetis F, Cipolla R (2016) A single-lobe photometric stereo approach for heterogeneous material. SIAM J Imaging Sci 9(4):1858–1888

    MathSciNet  MATH  Google Scholar 

  23. Mo Z, Shi B, Lu F, Yeung S-K, Matsushita Y (2018) Uncalibrated photometric stereo under natural illumination. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2936–2945

    Google Scholar 

  24. Onn R, Bruckstein A (1990) Integrability disambiguates surface recovery in two-image photometric stereo. Int J Comput Vis 5(1):105–113

    Google Scholar 

  25. Papadhimitri T, Favaro P (2013) A new perspective on uncalibrated photometric stereo. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1474–1481

    Google Scholar 

  26. Papadhimitri T, Favaro P (2014) Uncalibrated near-light photometric stereo. In: Proceedings of the British machine vision conference (BMVC)

    Google Scholar 

  27. Peng S, Haefner B, Quéau Y, Cremers D (2017) Depth super-resolution meets uncalibrated photometric stereo. In: Proceedings of the IEEE international conference on computer vision (ICCV) workshops, pp 2961–2968

    Google Scholar 

  28. Poincaré H (1905) Sur la dynamique de l’électron. Comptes Rendus de l’Académie des Sciences 140:1504–1508

    MATH  Google Scholar 

  29. Quéau Y, Mecca R, Durou J-D, Descombes X (2017) Photometric stereo with only two images: a theoretical study and numerical resolution. Image Vis Comput 57:175–191

    Google Scholar 

  30. Quéau Y, Wu T, Cremers D (2017) Semi-calibrated near-light photometric stereo. In: International conference on scale space and variational methods in computer vision (SSVM), pp 656–668

    Google Scholar 

  31. Quéau Y, Wu T, Lauze F, Durou J-D, Cremers D (2017) A non-convex variational approach to photometric stereo under inaccurate lighting. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 99–108

    Google Scholar 

  32. Quéau Y, Durix B, Wu T, Cremers D, Lauze F, Durou J-D (2018) LED-based photometric stereo: modeling, calibration and numerical solution. J Math Imaging Vis 60(3):313–340

    MathSciNet  MATH  Google Scholar 

  33. Quéau Y, Durou J-D, Aujol J-F (2018) Normal integration: a survey. J Math Imaging Vis 60(4):576–593

    MathSciNet  MATH  Google Scholar 

  34. Radow G, Hoeltgen L, Quéau Y, Breuß M (2019) Optimisation of classic photometric stereo by non-convex variational minimisation. J Math Imaging Vis 61(1):84–105

    MathSciNet  MATH  Google Scholar 

  35. Ramamoorthi R, Hanrahan P (2001) An efficient representation for irradiance environment maps. In: Proceedings of the annual conference on computer graphics and interactive techniques, pp 497–500

    Google Scholar 

  36. Sengupta S, Zhou H, Forkel W, Basri R, Goldstein T, Jacobs D (2018) Solving uncalibrated photometric stereo using fewer images by jointly optimizing low-rank matrix completion and integrability. J Math Imaging Vis 60(4):563–575

    MathSciNet  MATH  Google Scholar 

  37. Shi B, Inose K, Matsushita Y, Tan P, Yeung S-K, Ikeuchi K (2014) Photometric stereo using internet images. In: Proceedings of the international conference on 3D vision (3DV), vol 1, pp 361–368

    Google Scholar 

  38. Shi B, Wu Z, Mo Z, Duan D, Yeung S-K, Tan P (2019) A benchmark dataset and evaluation for non-Lambertian and uncalibrated photometric stereo. IEEE Trans Pattern Anal Mach Intell 41(2):271–284

    Google Scholar 

  39. Tozza S, Falcone M (2016) Analysis and approximation of some shape-from-shading models for non-Lambertian surfaces. J Math Imaging Vis 55(2):153–178

    MathSciNet  MATH  Google Scholar 

  40. Tozza S, Mecca R, Duocastella M, Del Bue A (2016) Direct differential photometric stereo shape recovery of diffuse and specular surfaces. J Math Imaging Vis 56(1):57–76

    MathSciNet  MATH  Google Scholar 

  41. Triggs B, McLauchlan PF, Hartley RI, Fitzgibbon AW (1999) Bundle adjustment – a modern synthesis. In: International workshop on vision algorithms (ICCV workshops), pp 298–372

    Google Scholar 

  42. Woodham RJ (1978) Reflectance map techniques for analyzing surface defects in metal castings. Technical report AITR-457. MIT

    Google Scholar 

  43. Woodham RJ (1980) Photometric method for determining surface orientation from multiple images. Opt Eng 19(1):139–144

    Google Scholar 

  44. Yuille A, Snow D (1997) Shape and albedo from multiple images using integrability. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 158–164

    Google Scholar 

  45. Zhang R, Tsai P-S, Cryer JE, Shah M (1999) Shape-from-shading: a survey. IEEE Trans Pattern Anal Mach Intell 21(8):690–706

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Brahimi .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof of Proposition 5.1

Proposition 5.1 characterizes the integrability of a normal field in terms of the coefficients \(m_1\), \(m_2\) and \(m_3\) of \(\mathbf {m}:=\rho \mathbf {n}\). The following proof of this proposition is largely inspired by [25].

Proof

According to Eqs. (5.15)–(5.17), integrability of the normal field under perspective projection can be written as:

$$\begin{aligned}&\hat{p}_{v} = \hat{q}_{u}\text { over }\Omega , \nonumber \\ \iff&\left( \frac{p}{f - u p - v q} \right) _v = \left( \frac{q}{f - u p - v q}\right) _u\text { over }\Omega , \nonumber \\ \iff&f p_{v} - v q p_{v} + v p q_{v} - f q_{u} + u p q_{u} - u q p_{u} = 0\text { over }\Omega , \nonumber \\ \iff&\begin{pmatrix} p_v \\ q_v \\ 0 \end{pmatrix}^\top \begin{pmatrix} 0 \\ -f \\ v \end{pmatrix} \times \begin{pmatrix} p \\ q \\ -1 \end{pmatrix} + \begin{pmatrix} p_u \\ q_u \\ 0 \end{pmatrix}^\top \begin{pmatrix} -f \\ 0 \\ u \end{pmatrix} \times \begin{pmatrix} p \\ q \\ -1 \end{pmatrix} = 0\text { over }\Omega , \end{aligned}$$
(5.75)

where \(\times \) denotes the cross-product.

Besides, \(-\dfrac{\mathbf {m}}{m_3} = \begin{pmatrix} p \\ q \\ -1 \end{pmatrix}\) according to (5.14). If we denote \(\mathbf {w}_1 = \left[ 0,-f,v\right] ^\top \) and \(\mathbf {w}_2 = \left[ -f,0,u\right] ^\top \), then (5.75) yields the following equation over \(\Omega \):

$$\begin{aligned}&\left( \dfrac{-\mathbf {m}}{m_3}\right) _v^\top \mathbf {w}_1 \times \left( \dfrac{-\mathbf {m}}{m_3}\right) + \left( \dfrac{-\mathbf {m}}{m_3}\right) _u^\top \mathbf {w}_2 \times \left( \dfrac{-\mathbf {m}}{m_3}\right) = 0,\nonumber \\ \iff&\left( -\dfrac{m_3\mathbf {m}_v - m_{3v}\mathbf {m}}{{m_3}^2}\right) ^\top \mathbf {w}_1 \times \left( \dfrac{-\mathbf {m}}{m_3}\right) +\left( -\dfrac{m_3 \mathbf {m}_u - m_{3u}\mathbf {m}}{{m_3}^2}\right) ^\top \mathbf {w}_2 \times \left( \dfrac{-\mathbf {m}}{m_3}\right) = 0. \end{aligned}$$
(5.76)

Multiplying Eq. (5.76) by \({m_3}^3\):

$$\begin{aligned} (m_3\mathbf {m}_v - m_{3v}\mathbf {m})^\top \mathbf {w}_1 \times \mathbf {m} + (m_3\mathbf {m}_u - m_{3u}\mathbf {m})^\top \mathbf {w}_2 \times \mathbf {m} = 0 \quad \text { over }\Omega . \end{aligned}$$
(5.77)

In addition, \((\mathbf {w}_1 \times \mathbf {m}) \perp \mathbf {m}\) and \((\mathbf {w}_2 \times \mathbf {m}) \perp \mathbf {m}\), thus the following relationship holds over \(\Omega \):

$$\begin{aligned}&m_3\mathbf {m}_v^\top (\mathbf {w}_1 \times \mathbf {m}) + m_3\mathbf {m}_u^\top (\mathbf {w}_2 \times \mathbf {m}) = 0, \nonumber \\ \iff&\mathbf {m}_v^\top (\mathbf {w}_1 \times \mathbf {m}) + \mathbf {m}_u^\top (\mathbf {w}_2 \times \mathbf {m}) = 0, \nonumber \\ \iff&u(m_{1u}m_{2} - m_{1}m_{2u} ) + v(m_{1v}m_{2} - m_{1}m_{2v}) \nonumber \\&+ f(m_{1v}m_{3} - m_{1}m_{3v}) - f(m_{2u}m_{3} - m_{2}m_{3u}) = 0. \end{aligned}$$
(5.78)

which concludes the proof.   \(\square \)

Appendix 2: Proof of Theorem 5.1

Theorem 5.1 characterizes scaled Lorentz transformations. Its proof relies on the following Propositions 5.25.4 from Lorentz’ group theory (proofs of these propositions can be found in [14]).

Proposition 5.2

For any proper and orthochronous Lorentz transformation \(\mathbf {A} \in L^{p}_{o}\), there exists a unique couple \((\mathbf {v}, \mathbf {O}) \in B(\mathbf {0},1) \times SO(3,\mathbb {R})\) such that

$$\begin{aligned} \mathbf {A} = \mathbf {S}(\mathbf {v})\, \mathbf {R}(\mathbf {O}) = \begin{pmatrix} \gamma &{} \gamma \, \mathbf {v}^\top \mathbf {O}\\ \\ \gamma \, \mathbf {v} &{} (\mathbf {I_{3}} + \frac{\gamma ^{2}}{1 + \gamma } \mathbf {v} \mathbf {v}^\top ) \mathbf {O} \\ \\ \end{pmatrix}, \end{aligned}$$
(5.79)

where \(\gamma = \frac{1}{\sqrt{1-\left\Vert \mathbf {v}\right\Vert ^2}}\), and

$$\begin{aligned} \mathbf {S}(\mathbf {v}) = \begin{pmatrix} \gamma &{} \gamma \, \mathbf {v}^\top \\ \\ \gamma \, \mathbf {v} &{} \mathbf {I_{3}} + \frac{\gamma ^{2}}{1 + \gamma } \mathbf {v} \mathbf {v}^\top \\ \\ \end{pmatrix}, \qquad&\mathbf {R}(\mathbf {O}) = \begin{pmatrix} 1 &{} 0 &{} 0 &{} 0\\ 0 \\ 0 &{} &{} \mathbf {O} \\ 0 \\ \end{pmatrix}. \end{aligned}$$
(5.80)

Proposition 5.3

The product of two proper/improper transformations is a proper one, and the product of a proper and improper transformation is an improper one. The same for the orthochronous property.

Proposition 5.4

Matrix \(\mathbf {T} = \begin{pmatrix} -1 &{} 0 &{} 0 &{} 0\\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{pmatrix}\) is improper and non-orthochronous, and

matrix \(\mathbf {P} = \begin{pmatrix} 1 &{} 0 &{} 0 &{} 0\\ 0 &{} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 \end{pmatrix}\) is improper and orthochronous.

Using these already known results, we propose the following characterization of Lorentz transformations:

Proposition 5.5

For any Lorentz transformation \(\mathbf {A} \in L\), there exists a unique couple \((\mathbf {v}, \mathbf {O}) \in B(\mathbf {0},1) \times SO(3,\mathbb {R})\) such that

$$\begin{aligned} \mathbf {A} = \begin{pmatrix} \epsilon _{1}(\mathbf {A})\,\gamma &{} \epsilon _{1}(\mathbf {A})\,\gamma \, \mathbf {v}^{\top }\mathbf {O}\\ \\ \epsilon _{2}(\mathbf {A})\,\gamma \, \mathbf {v} &{} \epsilon _{2}(\mathbf {A})(\mathbf {I_{3}} + \frac{\gamma ^{2}}{1 + \gamma } \mathbf {v} \mathbf {v}^{\top }) \mathbf {O} \end{pmatrix}. \end{aligned}$$
(5.81)

Proof

We first assume that \(\mathbf {A} \in L^{i}_{n}\).

According to Proposition 5.4, \(\mathbf {T} \in L^{i}_{n}\). Thus using Proposition 5.3: \(\mathbf {T}\mathbf {A} \in L^{p}_{o}\). Therefore, according to Proposition 5.2, there exists a unique couple \((\mathbf {v}, \mathbf {O}) \in B(\mathbf {0},1) \times SO(3,\mathbb {R})\) such that \( \mathbf {T}\mathbf {A} = \mathbf {S}(\mathbf {v})\mathbf {R}(\mathbf {O})\). Since \(\mathbf {T}\mathbf {T} = \mathbf {I_4}\), this implies that \(\mathbf {A} = \mathbf {T}\mathbf {S}(\mathbf {v})\mathbf {R}(\mathbf {O})\). In addition, \(\epsilon _1(\mathbf {A}) = -1\) and \(\epsilon _2(\mathbf {A}) = 1\), hence:

$$\begin{aligned} \mathbf {A} = \begin{pmatrix} \epsilon _{1}(\mathbf {A})\gamma &{} \epsilon _{1}(\mathbf {A})\gamma \mathbf {v}^\top \mathbf {O}\\ \epsilon _{2}(\mathbf {A})\gamma \mathbf {v} &{} \epsilon _{2}(\mathbf {A})(\mathbf {I_{3}} + \frac{\gamma ^{2}}{1 + \gamma } \mathbf {v} \mathbf {v}^\top ) \mathbf {O} \end{pmatrix}. \end{aligned}$$
(5.82)

With the same reasoning, we get the result for all the other transformations.   \(\square \)

Combining Proposition 5.5 and the definition (5.24) of scaled Lorentz transformations, we get Theorem 5.1.

Appendix 3: Some Useful Results on GBR and Lorentz Matrices, and Corollary 5.1

The aim of this section is to prove Corollary 5.1, which was used in the proofs of Theorems 5.2 and 5.3. Its proof relies on a few results on GBR and Lorentz matrices, which we provide in the following.

Let us denote by G the group of GBR transformations, and by \(G_s\) that of scaled GBR transformations defined by

$$\begin{aligned} G_s = \lbrace s\mathbf {A} | s \in \mathbb {R}\backslash \{0\} \text { and } \mathbf {A} \in G \rbrace . \end{aligned}$$
(5.83)

Both are subgroups of \(GL(3,\mathbb {R})\) under the matrix product. For all \(\mathbf {B} = s\mathbf {A} \in G_s\), we call s the scale part of \(\mathbf {B}\), and \(\mathbf {A}\) its GBR part.

Let \(\mathbf {C} \in \mathbb {R}^{n \times n}\) with \(n > 1\) and \(C_{ij}\) its entries. We will use the following notation for a minor of size two:

$$\begin{aligned} C^{i,j}_{k,l} = C_{ij}C_{kl} - C_{kj}C_{il}, \end{aligned}$$
(5.84)

where \(1 \le i < k \le n\) and \(1 \le j < l \le n\).

Such minors allow to characterize scaled GBR matrices:

Proposition 5.6

Let \(\mathbf {A} \in \mathbb {R}^{3 \times 3}, A_{ij}\) the entries of \(\mathbf {A}\). Then, \(\mathbf {A}\) is a scaled GBR transformation iff \(\mathbf {A}\) is invertible and fulfills the following equations:

$$\begin{aligned} \left\{ \begin{array}{l} A^{2,1}_{3,2} = A^{2,1}_{3,3} = A^{1,2}_{3,3} = A^{1,1}_{3,2} = 0,\\ A^{2,2}_{3,3} = A^{1,1}_{3,3}. \end{array} \right. \end{aligned}$$
(5.85)

Proof

See [4].   \(\square \)

Proposition 5.7

Let \(\mathbf {v} \in B_{0}(1), \gamma = \frac{1}{\sqrt{1-\left\Vert \mathbf {v}\right\Vert ^2}}\), then \(\mathbf {C} = \mathbf {I_3} + \frac{\gamma ^{2}}{1 + \gamma } \mathbf {v} \mathbf {v}^\top \) is positive definite.

Proof

Let \(\mathbf {B} = \frac{\gamma ^{2}}{1 + \gamma } \mathbf {v} \mathbf {v}^\top \). We note \(E_\lambda (\mathbf {B})\) the eigenspace associated to the eigenvalue \(\lambda \) of \(\mathbf {B}\). \(\mathbf {B}\) is symmetric, thus according to the spectral theorem, all the eigenvalues of \(\mathbf {B}\) are real, and \(\mathbb {R}^3 = \bigoplus \limits _{i=1}^r E_{\lambda _i}(\mathbf {B})\) with \(r \le 3\) the number of eigenvalues, and \(\lbrace \lambda _i \rbrace _{i=1 \ldots r}\) the eigenvalues of \(\mathbf {B}\). Hence: \(\text {dim}(\mathbb {R}^3) = \sum \limits _{i=1}^r \text {dim}(E_{\lambda _i}(\mathbf {B}))\). According to the rank-nullity theorem, \(\text {dim}(Ker(\mathbf {B})) + rank(\mathbf {B}) = 3\), and by definition \(rank(\mathbf {B}) = 1\), thus \(\text {dim}(Ker(\mathbf {B})) = \text {dim}(E_0(\mathbf {B})) = 2\). We deduce that there exists a unique nonzero eigenvalue \(\lambda \in \mathbb {R}\backslash \{0\}\) such that \(\mathbb {R}^3 = E_0(\mathbf {B}) \bigoplus E_\lambda (\mathbf {B}) \) with \(\text {dim}(E_\lambda (\mathbf {B})) = 1\).

Let \(\Pi _{\mathbf {v}}\) the orthogonal projection onto \(span \lbrace \mathbf {v} \rbrace \), and let \(\mathbf {x} \in \mathbb {R}^3\) : \(\Pi _{\mathbf {v}}(\mathbf {x}) = \frac{\mathbf {v}\mathbf {v}^\top }{\left\Vert \mathbf {v}\right\Vert ^2} \mathbf {x}\) and \(\Pi _{\mathbf {v}}(\mathbf {v}) = \mathbf {v}\). We have: \(\mathbf {B} = \frac{\gamma ^{2}}{1 + \gamma }\left\Vert \mathbf {v}\right\Vert ^2\Pi _{\mathbf {v}}\) and \(\mathbf {B}\mathbf {v} = (\frac{\gamma ^{2}}{1 + \gamma }\left\Vert \mathbf {v}\right\Vert ^2)\mathbf {v} \). Thus, \(\frac{\gamma ^{2}}{1 + \gamma }\left\Vert \mathbf {v}\right\Vert ^2\) is an eigenvalue of \(\mathbf {B}\) and \(\lambda = \frac{\gamma ^{2}}{1 + \gamma }\left\Vert \mathbf {v}\right\Vert ^2\) . Besides, \(\frac{\lambda }{\gamma -1} = \frac{\gamma ^{2}}{(\gamma - 1)(\gamma + 1)}\left\Vert \mathbf {v}\right\Vert ^2 = \frac{\gamma ^{2}}{\gamma ^2 - 1}\left\Vert \mathbf {v}\right\Vert ^2 = \frac{1}{1 - \frac{1}{\gamma ^2}}\left\Vert \mathbf {v}\right\Vert ^2 = \frac{1}{1-(1-\left\Vert \mathbf {v}\right\Vert ^2)}\left\Vert \mathbf {v}\right\Vert ^2=1\). Therefore, \(\lambda = \gamma - 1 \) and the eigenvalues of \(\mathbf {B}\) are 0 and \((\gamma - 1)\). Let \(\alpha \in \lbrace 0,\gamma - 1 \rbrace \) and \(\mathbf {u} \in E_\alpha (\mathbf {B})\). We have:

$$\begin{aligned} \mathbf {B}\mathbf {u}= \alpha \mathbf {u} \iff \mathbf {u} + \mathbf {B}\mathbf {u} = \mathbf {u} + \alpha \mathbf {u} \iff \mathbf {C} \mathbf {u} = (\alpha + 1)\mathbf {u}. \end{aligned}$$
(5.86)

Thus, \(1>0\) and \(\gamma > 0\) are the eigenvalues of \(\mathbf {C}\) with \(E_1(\mathbf {C}) = E_0(\mathbf {B})\) and \(E_\gamma (\mathbf {C}) = E_{\gamma -1}(\mathbf {B})\). Consequently, \(\mathbf {C}\) is positive definite.   \(\square \)

Proposition 5.8

Let \(\mathbf {A}_s \in L_s\) a scaled Lorentz transformation. The submatrix \(\mathbf {B}\) formed by the last 3 rows and 3 columns of \(\mathbf {A}_s\) is invertible.

Proof

By definition of \(\mathbf {A}_s\), there exists a unique couple \((s,{\tilde{\mathbf {A}}}) \in \mathbb {R}\backslash \{0\} \times L\) such that \(\mathbf {A}_s = s{\tilde{\mathbf {A}}}\). Hence, from Proposition 5.5, there exists a unique couple \((\mathbf {v}, \mathbf {O}) \in B(\mathbf {0},1) \times SO(3,\mathbb {R})\) such that \( \mathbf {B} = s \epsilon _{2}({\tilde{\mathbf {A}}})(\mathbf {I_{3}} + \frac{\gamma ^{2}}{1 + \gamma } \mathbf {v} \mathbf {v}^\top ) \mathbf {O}\). Since \(\mathbf {O} \in SO(3,\mathbb {R})\), \(\text {det}(\mathbf {O}) = 1\). In addition, Proposition 5.7 implies \(\text {det}(\mathbf {I_{3}} + \frac{\gamma ^{2}}{1 + \gamma } \mathbf {v} \mathbf {v}^\top ) {>} 0\), thus \(\text {det}(\mathbf {B}) \ne 0\).   \(\square \)

Corollary 5.1

Let \(\mathbf {A}_s \in L_s\) a scaled Lorentz transformation. If its entries \(A_{ij}\) fulfill

$$\begin{aligned} \left\{ \begin{array}{l} A^{3,2}_{4,3} = A^{3,2}_{4,4} = A^{2,3}_{4,4} = A^{2,2}_{4,3} = 0,\\ A^{3,3}_{4,4} = A^{2,2}_{4,4}, \end{array} \right. \end{aligned}$$
(5.87)

then the submatrix \(\mathbf {B}\) of \(\mathbf {A}_s\) formed by the last 3 rows and 3 columns is a scaled GBR, i.e., there exists a unique quadruple \((\lambda ,\mu ,\nu ,\beta ) \in \mathbb {R}^4\) with \(\lambda \ne 0, \beta \ne 0\) such that

$$\begin{aligned} \mathbf {A}_s=\begin{pmatrix} A_{11} &{} A_{12} &{} A_{13} &{} A_{14} \\ A_{21} &{} \beta \lambda &{} 0 &{} -\beta \mu \\ A_{31} &{} 0 &{} \beta \lambda &{} -\beta \nu \\ A_{41} &{} 0 &{} 0 &{} \beta \\ \end{pmatrix}. \end{aligned}$$
(5.88)

Proof

According to Proposition 5.8, \(\mathbf {B}\) is invertible. Besides, \(\mathbf {A}_s\) fulfill Eqs. (5.87) iff \(\mathbf {B}\) fulfill Eqs. (5.85), thus according to Proposition 5.6, \(\mathbf {B} \in G_s\).   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brahimi, M., Quéau, Y., Haefner, B., Cremers, D. (2020). On the Well-Posedness of Uncalibrated Photometric Stereo Under General Lighting. In: Durou, JD., Falcone, M., Quéau, Y., Tozza, S. (eds) Advances in Photometric 3D-Reconstruction. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-51866-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51866-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51865-3

  • Online ISBN: 978-3-030-51866-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics